science-gpt / app.py
thetamiraa's picture
change fast api to gradio
56d6018
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load model and tokenizer
model_name = "Dorjzodovsuren/Mongolian_Llama3-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def generate_response(input_text):
# Tokenize the input text
inputs = tokenizer(input_text, return_tensors="pt")
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=100, # Adjust for desired response length
temperature=0.7, # Adjust for creativity
top_p=0.9 # Adjust for response diversity
)
# Decode the generated text
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response_text
# Create Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs="text",
outputs="text",
title="Mongolian Llama3 Chatbot",
description="Ask anything in Mongolian!"
)
# Launch the Gradio app
iface.launch()