science-gpt / app.py
thetamiraa's picture
add fast api app
8647e9d
raw
history blame
1.04 kB
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
app = FastAPI()
# Load the Mongolian Llama model and tokenizer
model_name = "Dorjzodovsuren/Mongolian_Llama3-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
class UserInput(BaseModel):
text: str
@app.post("/generate/")
def generate_response(user_input: UserInput):
# Tokenize the input text
inputs = tokenizer(user_input.text, return_tensors="pt")
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=100, # Adjust for desired response length
num_return_sequences=1,
temperature=0.7, # Adjust for creativity
top_p=0.9 # Adjust for response diversity
)
# Decode the generated text
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"response": response}