import os # ── before you set the env var ── hf_home = "/data/.cache/huggingface" yolo_cfg = "/data/ultralytics" # create the folders (and any parents) if they don’t already exist os.makedirs(hf_home, exist_ok=True) os.makedirs(yolo_cfg, exist_ok=True) # now point HF and YOLO at them os.environ["HF_HOME"] = hf_home os.environ["YOLO_CONFIG_DIR"] = yolo_cfg from ultralytics import YOLO import numpy as np import torch from PIL import Image import cv2 from diffusers import StableDiffusionXLInpaintPipeline from utils import pil_to_cv2, cv2_to_pil import gradio as gr # ✅ Needed for error handling # ✅ Load models once yolo = YOLO("yolov8x-seg.pt") inpaint_pipe = StableDiffusionXLInpaintPipeline.from_pretrained( "diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, use_safetensors=True, use_auth_token=os.getenv("HF_TOKEN") ).to("cuda") def run_background_removal_and_inpaint(shared_output, prompt, negative_prompt): # Get image from shared_output if isinstance(shared_output, dict): image = shared_output.get("step1") else: image = None if image is None: raise gr.Error("Run Step 1 first to get a base image.") img_cv = pil_to_cv2(image) results = yolo(img_cv) # ✅ Validate YOLO detection result if not results or not results[0].masks or len(results[0].masks.data) == 0: raise gr.Error("No subject detected in the image. Please upload a clearer photo.") mask = results[0].masks.data[0].cpu().numpy() # Create inpainting mask binary = (mask > 0.5).astype(np.uint8) background_mask = 1 - binary kernel = np.ones((15, 15), np.uint8) dilated = cv2.dilate(background_mask, kernel, iterations=1) inpaint_mask = (dilated * 255).astype(np.uint8) # Resize and prepare images mask_pil = cv2_to_pil(inpaint_mask).resize((1024, 1024)).convert("L") img_pil = image.resize((1024, 1024)).convert("RGB") # Inpaint result = inpaint_pipe( prompt=prompt, negative_prompt=negative_prompt or "", image=img_pil, mask_image=mask_pil, guidance_scale=10, num_inference_steps=40 ).images[0] return result