Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,701 Bytes
94d7430 10bd531 e0eea92 10bd531 94d7430 79e7646 2c740bc 10bd531 93be815 10bd531 2c740bc 93be815 2c740bc 93be815 2c740bc 10bd531 93be815 2c740bc 10bd531 93be815 2c740bc 93be815 10bd531 2c740bc 79e7646 2c740bc 79e7646 93be815 2c740bc 94d7430 93be815 2c740bc 93be815 2c740bc 93be815 2c740bc 93be815 2c740bc 93be815 2c740bc 94d7430 2c740bc 93be815 2c740bc 79e7646 2c740bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import os
import traceback
from datetime import datetime
import torch, gc
from PIL import Image
import gradio as gr
from inference import generate_with_lora
from background_edit import run_background_removal_and_inpaint
# βββββββββββββββββββββ Helpers βββββββββββββββββββββ
def _print_trace():
traceback.print_exc()
def unload_models():
torch.cuda.empty_cache()
gc.collect()
def safe_generate_and_inpaint(
image,
prompt_1, neg_1, strength_1, guidance_1,
prompt_2, neg_2, guidance_2
):
try:
if image is None:
raise gr.Error("Please upload an image first.")
# Step 1: Headshot Refinement
print("[INFO] Step 1: Refining headshot...", flush=True)
refined = generate_with_lora(
image=image,
prompt=prompt_1,
negative_prompt=neg_1,
strength=strength_1,
guidance_scale=guidance_1,
)
# Save intermediate result to disk
os.makedirs("./outputs", exist_ok=True)
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
path = f"./outputs/step1_result_{ts}.png"
refined.save(path)
# Step 2: Background Inpainting
print("[INFO] Step 2: Inpainting background...", flush=True)
unload_models()
result = run_background_removal_and_inpaint(
image_path=path,
prompt=prompt_2,
negative_prompt=neg_2,
guidance_scale=guidance_2
)
return refined, result, ""
except gr.Error as e:
return None, None, f"π {str(e)}"
except Exception as e:
_print_trace()
return None, None, f"β Unexpected Error: {type(e).__name__}: {str(e)}"
# βββββββββββββββββββββ Gradio UI βββββββββββββββββββββ
with gr.Blocks() as demo:
gr.Markdown("## π§ Headshot + Background Generator (Full Prompt Control)")
with gr.Row():
input_image = gr.Image(type="pil", label="Upload Headshot")
gr.Markdown("### Step 1: Headshot Refinement (LoRA)")
with gr.Row():
prompt_1 = gr.Textbox(label="Headshot Prompt", value="a professional headshot of a confident woman in her 30s with blonde hair")
neg_1 = gr.Textbox(label="Headshot Negative Prompt", value="deformed, cartoon, anime, sketch, blurry, low quality")
with gr.Row():
strength_1 = gr.Slider(0.1, 1.0, value=0.2, step=0.05, label="Refinement Strength")
guidance_1 = gr.Slider(1, 20, value=17, step=0.5, label="Guidance Scale (Headshot)")
gr.Markdown("### Step 2: Background Inpainting (SDXL)")
with gr.Row():
prompt_2 = gr.Textbox(label="Background Prompt", value="modern hospital background, clean, soft lighting")
neg_2 = gr.Textbox(label="Background Negative Prompt", value="fantasy, cartoon, cluttered, sketch")
with gr.Row():
guidance_2 = gr.Slider(1, 20, value=10, step=0.5, label="Guidance Scale (Background)")
go_btn = gr.Button("β¨ Generate Refined Headshot + Background")
with gr.Row():
output_refined = gr.Image(type="pil", label="Step 1: Refined Headshot")
output_final = gr.Image(type="pil", label="Step 2: Final Image with Background")
error_box = gr.Markdown(label="Error", value="", visible=True)
go_btn.click(
fn=safe_generate_and_inpaint,
inputs=[
input_image, prompt_1, neg_1, strength_1, guidance_1,
prompt_2, neg_2, guidance_2
],
outputs=[output_refined, output_final, error_box]
)
demo.launch(debug=True)
|