File size: 3,701 Bytes
94d7430
10bd531
e0eea92
10bd531
94d7430
79e7646
2c740bc
10bd531
 
 
 
 
 
 
 
 
 
 
93be815
 
 
 
 
10bd531
2c740bc
 
 
93be815
 
2c740bc
 
93be815
 
 
 
2c740bc
10bd531
93be815
2c740bc
 
 
 
10bd531
93be815
2c740bc
 
93be815
 
 
 
 
 
10bd531
2c740bc
79e7646
2c740bc
 
 
 
 
 
 
79e7646
93be815
2c740bc
 
 
94d7430
93be815
 
2c740bc
93be815
 
 
 
 
 
 
 
 
 
 
 
2c740bc
 
93be815
2c740bc
93be815
2c740bc
 
 
93be815
2c740bc
 
94d7430
2c740bc
 
93be815
 
 
 
2c740bc
 
79e7646
2c740bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import traceback
from datetime import datetime
import torch, gc
from PIL import Image
import gradio as gr

from inference import generate_with_lora
from background_edit import run_background_removal_and_inpaint

# ───────────────────── Helpers ─────────────────────
def _print_trace():
    traceback.print_exc()

def unload_models():
    torch.cuda.empty_cache()
    gc.collect()

def safe_generate_and_inpaint(
    image,
    prompt_1, neg_1, strength_1, guidance_1,
    prompt_2, neg_2, guidance_2
):
    try:
        if image is None:
            raise gr.Error("Please upload an image first.")

        # Step 1: Headshot Refinement
        print("[INFO] Step 1: Refining headshot...", flush=True)
        refined = generate_with_lora(
            image=image,
            prompt=prompt_1,
            negative_prompt=neg_1,
            strength=strength_1,
            guidance_scale=guidance_1,
        )

        # Save intermediate result to disk
        os.makedirs("./outputs", exist_ok=True)
        ts = datetime.now().strftime("%Y%m%d_%H%M%S")
        path = f"./outputs/step1_result_{ts}.png"
        refined.save(path)

        # Step 2: Background Inpainting
        print("[INFO] Step 2: Inpainting background...", flush=True)
        unload_models()
        result = run_background_removal_and_inpaint(
            image_path=path,
            prompt=prompt_2,
            negative_prompt=neg_2,
            guidance_scale=guidance_2
        )

        return refined, result, ""

    except gr.Error as e:
        return None, None, f"πŸ›‘ {str(e)}"
    except Exception as e:
        _print_trace()
        return None, None, f"❌ Unexpected Error: {type(e).__name__}: {str(e)}"

# ───────────────────── Gradio UI ─────────────────────
with gr.Blocks() as demo:
    gr.Markdown("## 🧠 Headshot + Background Generator (Full Prompt Control)")

    with gr.Row():
        input_image = gr.Image(type="pil", label="Upload Headshot")

    gr.Markdown("### Step 1: Headshot Refinement (LoRA)")

    with gr.Row():
        prompt_1 = gr.Textbox(label="Headshot Prompt", value="a professional headshot of a confident woman in her 30s with blonde hair")
        neg_1 = gr.Textbox(label="Headshot Negative Prompt", value="deformed, cartoon, anime, sketch, blurry, low quality")

    with gr.Row():
        strength_1 = gr.Slider(0.1, 1.0, value=0.2, step=0.05, label="Refinement Strength")
        guidance_1 = gr.Slider(1, 20, value=17, step=0.5, label="Guidance Scale (Headshot)")

    gr.Markdown("### Step 2: Background Inpainting (SDXL)")

    with gr.Row():
        prompt_2 = gr.Textbox(label="Background Prompt", value="modern hospital background, clean, soft lighting")
        neg_2 = gr.Textbox(label="Background Negative Prompt", value="fantasy, cartoon, cluttered, sketch")

    with gr.Row():
        guidance_2 = gr.Slider(1, 20, value=10, step=0.5, label="Guidance Scale (Background)")

    go_btn = gr.Button("✨ Generate Refined Headshot + Background")

    with gr.Row():
        output_refined = gr.Image(type="pil", label="Step 1: Refined Headshot")
        output_final = gr.Image(type="pil", label="Step 2: Final Image with Background")

    error_box = gr.Markdown(label="Error", value="", visible=True)

    go_btn.click(
        fn=safe_generate_and_inpaint,
        inputs=[
            input_image, prompt_1, neg_1, strength_1, guidance_1,
            prompt_2, neg_2, guidance_2
        ],
        outputs=[output_refined, output_final, error_box]
    )

demo.launch(debug=True)