import re import time import io from io import StringIO from typing import Any, Dict, List #Modules to Import import openai import streamlit as st from langchain import LLMChain, OpenAI from langchain.agents import AgentExecutor, Tool, ZeroShotAgent from langchain.chains import RetrievalQA from langchain.chains.question_answering import load_qa_chain from langchain.docstore.document import Document from langchain.document_loaders import PyPDFLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.llms import OpenAI from langchain.memory import ConversationBufferMemory from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import VectorStore from langchain.vectorstores.faiss import FAISS from pypdf import PdfReader @st.cache_data def parse_pdf (file: io.BytesIO)-> List[str]: pdf = PdfReader(file) output = [] for page in pdf.pages: text = page.extract_text() #Merge hyphenated words text = re.sub(r"(\w+)-\n(\w+)", "\1\2", text) # Fix newlines in the middle of sentences text = re.sub(r"(? List [Document]: """Converts a string or list of strings to a list of Documents with metadata,""" if isinstance(text, str): #Take a single string as one page text = [text] page_docs = [Document (page_content=page) for page in text] # Add page numbers as metadata for i, doc in enumerate(page_docs): doc.metadata["page"] = 1 + 1 # Split pages into chunks doc_chunks = [] for doc in page_docs: text_splitter = RecursiveCharacterTextSplitter( chunk_size=4000, separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""], chunk_overlap=0, ) chunks = text_splitter.split_text(doc.page_content) for i, chunk in enumerate(chunks): doc = Document( page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": 1} ) # Add sources a metadata doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}" doc_chunks.append(doc) return doc_chunks uploaded_file = st.sidebar.file_uploader(":blue[Upload]", type=["pdf"]) if uploaded_file: doc = parse_pdf(uploaded_file) pages = text_to_docs(doc) # pages if pages: with st.expander('Show page contents', expanded=False): page_sel =st.number_input( label="selected page", min_value=1, max_value=len(pages), step=1 ) st.write(pages[page_sel-1]) api = st.sidebar.text_input( "Open api key", type="password", placeholder="sk-", help="https://platform.openai.com/account/api-keys", ) if api: embeddings = OpenAIEmbeddings(openai_api_key = api) # Indexing # Save in a Vector DB_ with st.spinner("It's indexing. .."): index = FAISS.from_documents(pages, embeddings) qa = RetrievalQA.from_chain_type( llm = OpenAI(openai_api_key = api), chain_type = "stuff", retriever = index.as_retriever() ) # our tool tools = [ Tool( name="State of Union QA System", func=qa.run, description="Useful for when you need to answer questions about the aspects asked. Input may be a partial or fully formed question." ) ] prefix=""""Have a conversation with a human, answering the following questions as best you can based on the context and memory available. You have access to a single tool:""" suffix="""Begin!" {chat_history} Question: {input} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["input", "chat_history", "agent_scratchpad"], ) if "memory" not in st.session_state: st.session_state.memory = ConversationBufferMemory(memory_key ="chat_history") #Chain # ZeroShotAgent llm_chain = LLMChain( llm=OpenAI( temperature=0, openai_api_key=api, model_name="gpt-3.5-turbo" ), prompt=prompt, ) agent = ZeroShotAgent (llm_chain=llm_chain, tools=tools, verbose=True) agent_chain = AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, verbose=True, memory=st.session_state.memory ) container = st.container() with container: st.title("🤖 AI ChatBot") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if query := st.chat_input("Hey yo !!! Wazzups!"): st.chat_message("user").markdown(query) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": query}) # response=llm_chain.memory.chat_memory.add_user_message(prompt) with st.spinner("It's indexing. .."): response = agent_chain.run(query) # st.write(response) # #f"Echo: {prompt}" get_completion(template_string) # # Display assistant response in chat message container with st.chat_message("assistant"): st.markdown(response) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response}) # with st.expander("History/Memory"): # st.write(st.session_state.memory)