import transformers import pickle import os import re import numpy as np import torchvision import nltk import torch import pandas as pd import requests import zipfile import tempfile from openai import OpenAI from PyPDF2 import PdfReader from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from transformers import ( AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTokenClassification, AutoModelForCausalLM, pipeline, Qwen2Tokenizer, BartForConditionalGeneration ) from sentence_transformers import SentenceTransformer, CrossEncoder, util from sklearn.metrics.pairwise import cosine_similarity from bs4 import BeautifulSoup from huggingface_hub import hf_hub_download from safetensors.torch import load_file from typing import List, Dict, Optional from safetensors.numpy import load_file from safetensors.torch import safe_open nltk.download('punkt_tab') app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) models = {} data = {} class QueryRequest(BaseModel): query: str language_code: int = 1 class ChatQuery(BaseModel): query: str language_code: int = 1 #conversation_id: str class ChatMessage(BaseModel): role: str content: str timestamp: str def init_nltk(): try: nltk.download('punkt', quiet=True) return True except Exception as e: print(f"Error initializing NLTK: {e}") return False def get_completion(prompt: str, model: str = "deepseek/deepseek-prover-v2:free") -> str: api_key = os.environ.get('OPENROUTER_API_KEY') if not api_key: raise HTTPException(status_code=500, detail="OPENROUTER_API_KEY not found in environment variables") client = OpenAI( base_url="https://openrouter.ai/api/v1", api_key=api_key ) if not prompt.strip(): raise HTTPException(status_code=400, detail="Please enter a question") try: completion = client.chat.completions.create( extra_headers={ "HTTP-Referer": "https://huggingface.co/spaces/thechaiexperiment/phitrial", "X-Title": "My Hugging Face Space" }, model=model, messages=[ { "role": "user", "content": prompt } ] ) if (completion and hasattr(completion, 'choices') and completion.choices and hasattr(completion.choices[0], 'message') and hasattr(completion.choices[0].message, 'content')): return completion.choices[0].message.content else: raise HTTPException(status_code=500, detail="Received invalid response from API") except Exception as e: raise HTTPException(status_code=500, detail=str(e)) def load_models(): try: print("Loading models...") device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Device set to use {device}") models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512) models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2') models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en") models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en") models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar") models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar") models['att_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base") models['att_model'] = BartForConditionalGeneration.from_pretrained("facebook/bart-base") models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER") models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER") models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer']) model_name = "M4-ai/Orca-2.0-Tau-1.8B" models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name) models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name) models['gen_tokenizer'] = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct") models['gen_model'] = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct") print("Models loaded successfully") return True except Exception as e: print(f"Error loading models: {e}") return False def load_embeddings() -> Optional[Dict[str, np.ndarray]]: try: embeddings_path = 'embeddings.safetensors' if not os.path.exists(embeddings_path): print("File not found locally. Attempting to download from Hugging Face Hub...") embeddings_path = hf_hub_download( repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'), filename="embeddings.safetensors", repo_type="space" ) embeddings = {} with safe_open(embeddings_path, framework="pt") as f: keys = f.keys() for key in keys: try: tensor = f.get_tensor(key) if not isinstance(tensor, torch.Tensor): raise TypeError(f"Value for key {key} is not a valid PyTorch tensor.") embeddings[key] = tensor.numpy() except Exception as key_error: print(f"Failed to process key {key}: {key_error}") if embeddings: print("Embeddings successfully loaded.") else: print("No embeddings could be loaded. Please check the file format and content.") return embeddings except Exception as e: print(f"Error loading embeddings: {e}") return None def normalize_key(key: str) -> str: match = re.search(r'file_(\d+)', key) if match: return match.group(1) return key def load_recipes_embeddings() -> Optional[np.ndarray]: try: embeddings_path = 'recipes_embeddings.safetensors' if not os.path.exists(embeddings_path): print("File not found locally. Attempting to download from Hugging Face Hub...") embeddings_path = hf_hub_download( repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'), filename="embeddings.safetensors", repo_type="space" ) embeddings = load_file(embeddings_path) if "embeddings" not in embeddings: raise ValueError("Key 'embeddings' not found in the safetensors file.") tensor = embeddings["embeddings"] print(f"Successfully loaded embeddings.") print(f"Shape of embeddings: {tensor.shape}") print(f"Dtype of embeddings: {tensor.dtype}") print(f"First few values of the first embedding: {tensor[0][:5]}") return tensor except Exception as e: print(f"Error loading embeddings: {e}") return None def load_documents_data(folder_path='downloaded_articles/downloaded_articles'): try: print("Loading documents data...") if not os.path.exists(folder_path) or not os.path.isdir(folder_path): print(f"Error: Folder '{folder_path}' not found") return False html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')] if not html_files: print(f"No HTML files found in folder '{folder_path}'") return False documents = [] for file_name in html_files: file_path = os.path.join(folder_path, file_name) try: with open(file_path, 'r', encoding='utf-8') as file: soup = BeautifulSoup(file, 'html.parser') text = soup.get_text(separator='\n').strip() documents.append({"file_name": file_name, "content": text}) except Exception as e: print(f"Error reading file {file_name}: {e}") data['df'] = pd.DataFrame(documents) if data['df'].empty: print("No valid documents loaded.") return False print(f"Successfully loaded {len(data['df'])} document records.") return True except Exception as e: print(f"Error loading docs: {e}") return None def load_data(): embeddings_success = load_embeddings() documents_success = load_documents_data() if not embeddings_success: print("Warning: Failed to load embeddings, falling back to basic functionality") if not documents_success: print("Warning: Failed to load documents data, falling back to basic functionality") return True print("Initializing application...") init_success = load_models() and load_data() def translate_text(text, source_to_target='ar_to_en'): try: if source_to_target == 'ar_to_en': tokenizer = models['ar_to_en_tokenizer'] model = models['ar_to_en_model'] else: tokenizer = models['en_to_ar_tokenizer'] model = models['en_to_ar_model'] inputs = tokenizer(text, return_tensors="pt", truncation=True) outputs = model.generate(**inputs) return tokenizer.decode(outputs[0], skip_special_tokens=True) except Exception as e: print(f"Translation error: {e}") return text def embed_query_text(query_text): embedding = models['embedding_model'] query_embedding = embedding.encode([query_text]) return query_embedding def query_embeddings(query_embedding, embeddings_data, n_results): embeddings_data = load_embeddings() if not embeddings_data: print("No embeddings data available.") return [] try: doc_ids = list(embeddings_data.keys()) doc_embeddings = np.array(list(embeddings_data.values())) similarities = cosine_similarity(query_embedding, doc_embeddings).flatten() top_indices = similarities.argsort()[-n_results:][::-1] return [(doc_ids[i], similarities[i]) for i in top_indices] except Exception as e: print(f"Error in query_embeddings: {e}") return [] def query_recipes_embeddings(query_embedding, embeddings_data, n_results): embeddings_data = load_recipes_embeddings() if embeddings_data is None: print("No embeddings data available.") return [] try: if query_embedding.ndim == 1: query_embedding = query_embedding.reshape(1, -1) similarities = cosine_similarity(query_embedding, embeddings_data).flatten() top_indices = similarities.argsort()[-n_results:][::-1] return [(index, similarities[index]) for index in top_indices] except Exception as e: print(f"Error in query_recipes_embeddings: {e}") return [] def get_page_title(url): try: response = requests.get(url) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') title = soup.find('title') return title.get_text() if title else "No title found" else: return None except requests.exceptions.RequestException: return None def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'): texts = [] for doc_id in doc_ids: file_path = os.path.join(folder_path, doc_id) try: if not os.path.exists(file_path): print(f"Warning: Document file not found: {file_path}") texts.append("") continue with open(file_path, 'r', encoding='utf-8') as file: soup = BeautifulSoup(file, 'html.parser') text = soup.get_text(separator=' ', strip=True) texts.append(text) except Exception as e: print(f"Error retrieving document {doc_id}: {e}") texts.append("") return texts def retrieve_rec_texts( document_indices, folder_path='downloaded_articles/downloaded_articles', metadata_path='recipes_metadata.xlsx' ): try: metadata_df = pd.read_excel(metadata_path) if "id" not in metadata_df.columns or "original_file_name" not in metadata_df.columns: raise ValueError("Metadata file must contain 'id' and 'original_file_name' columns.") metadata_df = metadata_df.sort_values(by="id").reset_index(drop=True) if metadata_df.index.max() < max(document_indices): raise ValueError("Some document indices exceed the range of metadata.") document_texts = [] for idx in document_indices: if idx >= len(metadata_df): print(f"Warning: Index {idx} is out of range for metadata.") continue original_file_name = metadata_df.iloc[idx]["original_file_name"] if not original_file_name: print(f"Warning: No file name found for index {idx}") continue file_path = os.path.join(folder_path, original_file_name) if os.path.exists(file_path): with open(file_path, "r", encoding="utf-8") as f: document_texts.append(f.read()) else: print(f"Warning: File not found at {file_path}") return document_texts except Exception as e: print(f"Error in retrieve_rec_texts: {e}") return [] def retrieve_metadata(document_indices: List[int], metadata_path: str = 'recipes_metadata.xlsx') -> Dict[int, Dict[str, str]]: try: metadata_df = pd.read_excel(metadata_path) required_columns = {'id', 'original_file_name', 'url'} if not required_columns.issubset(metadata_df.columns): raise ValueError(f"Metadata file must contain columns: {required_columns}") metadata_df['id'] = metadata_df['id'].astype(int) filtered_metadata = metadata_df[metadata_df['id'].isin(document_indices)] metadata_dict = { int(row['id']): { "original_file_name": row['original_file_name'], "url": row['url'] } for _, row in filtered_metadata.iterrows() } return metadata_dict except Exception as e: print(f"Error retrieving metadata: {e}") return {} def rerank_documents(query, document_ids, document_texts, cross_encoder_model): try: pairs = [(query, doc) for doc in document_texts] scores = cross_encoder_model.predict(pairs) scored_documents = list(zip(scores, document_ids, document_texts)) scored_documents.sort(key=lambda x: x[0], reverse=True) print("Reranked results:") for idx, (score, doc_id, doc) in enumerate(scored_documents): print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id})") return scored_documents except Exception as e: print(f"Error reranking documents: {e}") return [] def translate_ar_to_en(text): try: ar_to_en_tokenizer = models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en") ar_to_en_model= models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en") inputs = ar_to_en_tokenizer(text, return_tensors="pt", truncation=True, padding=True) translated_ids = ar_to_en_model.generate( inputs.input_ids, max_length=512, num_beams=4, early_stopping=True ) translated_text = ar_to_en_tokenizer.decode(translated_ids[0], skip_special_tokens=True) return translated_text except Exception as e: print(f"Error during Arabic to English translation: {e}") return None def translate_en_to_ar(text): try: en_to_ar_tokenizer = models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar") en_to_ar_model = models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar") inputs = en_to_ar_tokenizer(text, return_tensors="pt", truncation=True, padding=True) translated_ids = en_to_ar_model.generate( inputs.input_ids, max_length=512, num_beams=4, early_stopping=True ) translated_text = en_to_ar_tokenizer.decode(translated_ids[0], skip_special_tokens=True) return translated_text except Exception as e: print(f"Error during English to Arabic translation: {e}") return None @app.get("/") async def root(): return {"message": "Welcome to TeaRAG! Your Medical Assistant Powered by RAG"} @app.get("/health") async def health_check(): """Health check endpoint""" status = { 'status': 'healthy', 'models_loaded': bool(models), 'embeddings_loaded': bool(data.get('embeddings')), 'documents_loaded': not data.get('df', pd.DataFrame()).empty } return status if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)