Spaces:
Sleeping
Sleeping
Update general_rag.py
Browse files- general_rag.py +222 -32
general_rag.py
CHANGED
@@ -1,24 +1,39 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import numpy as np
|
|
|
|
|
4 |
import torch
|
5 |
import pandas as pd
|
6 |
import requests
|
|
|
|
|
|
|
|
|
7 |
from fastapi import FastAPI, HTTPException
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
from pydantic import BaseModel
|
10 |
from transformers import (
|
11 |
AutoTokenizer,
|
12 |
AutoModelForSeq2SeqLM,
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
)
|
15 |
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
16 |
from sklearn.metrics.pairwise import cosine_similarity
|
17 |
from bs4 import BeautifulSoup
|
18 |
from huggingface_hub import hf_hub_download
|
19 |
-
from safetensors.torch import
|
20 |
from typing import List, Dict, Optional
|
21 |
-
from
|
|
|
|
|
|
|
22 |
|
23 |
app = FastAPI()
|
24 |
app.add_middleware(
|
@@ -28,7 +43,6 @@ app.add_middleware(
|
|
28 |
allow_methods=["*"],
|
29 |
allow_headers=["*"],
|
30 |
)
|
31 |
-
|
32 |
models = {}
|
33 |
data = {}
|
34 |
|
@@ -39,6 +53,21 @@ class QueryRequest(BaseModel):
|
|
39 |
class ChatQuery(BaseModel):
|
40 |
query: str
|
41 |
language_code: int = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def get_completion(prompt: str, model: str = "deepseek/deepseek-prover-v2:free") -> str:
|
44 |
api_key = os.environ.get('OPENROUTER_API_KEY')
|
@@ -82,11 +111,9 @@ def get_completion(prompt: str, model: str = "deepseek/deepseek-prover-v2:free")
|
|
82 |
|
83 |
def load_models():
|
84 |
try:
|
85 |
-
print("Loading
|
86 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
87 |
print(f"Device set to use {device}")
|
88 |
-
|
89 |
-
# General models for all domains
|
90 |
models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
91 |
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
|
92 |
models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2')
|
@@ -94,11 +121,20 @@ def load_models():
|
|
94 |
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
95 |
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
96 |
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
return True
|
100 |
except Exception as e:
|
101 |
-
print(f"Error loading
|
102 |
return False
|
103 |
|
104 |
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
|
@@ -132,18 +168,45 @@ def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
|
|
132 |
print(f"Error loading embeddings: {e}")
|
133 |
return None
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
|
136 |
try:
|
137 |
print("Loading documents data...")
|
138 |
if not os.path.exists(folder_path) or not os.path.isdir(folder_path):
|
139 |
print(f"Error: Folder '{folder_path}' not found")
|
140 |
return False
|
141 |
-
|
142 |
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')]
|
143 |
if not html_files:
|
144 |
print(f"No HTML files found in folder '{folder_path}'")
|
145 |
return False
|
146 |
-
|
147 |
documents = []
|
148 |
for file_name in html_files:
|
149 |
file_path = os.path.join(folder_path, file_name)
|
@@ -154,18 +217,44 @@ def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
|
|
154 |
documents.append({"file_name": file_name, "content": text})
|
155 |
except Exception as e:
|
156 |
print(f"Error reading file {file_name}: {e}")
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
print(f"Successfully loaded {len(data['df'])} document records.")
|
164 |
-
return True
|
165 |
except Exception as e:
|
166 |
print(f"Error loading docs: {e}")
|
167 |
return None
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
def embed_query_text(query_text):
|
170 |
embedding = models['embedding_model']
|
171 |
query_embedding = embedding.encode([query_text])
|
@@ -186,6 +275,33 @@ def query_embeddings(query_embedding, embeddings_data, n_results):
|
|
186 |
print(f"Error in query_embeddings: {e}")
|
187 |
return []
|
188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'):
|
190 |
texts = []
|
191 |
for doc_id in doc_ids:
|
@@ -204,6 +320,58 @@ def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded
|
|
204 |
texts.append("")
|
205 |
return texts
|
206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
|
208 |
try:
|
209 |
pairs = [(query, doc) for doc in document_texts]
|
@@ -218,20 +386,40 @@ def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
|
|
218 |
print(f"Error reranking documents: {e}")
|
219 |
return []
|
220 |
|
221 |
-
def
|
222 |
try:
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
|
|
|
|
232 |
except Exception as e:
|
233 |
-
print(f"
|
234 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
@app.get("/")
|
237 |
async def root():
|
@@ -248,6 +436,8 @@ async def health_check():
|
|
248 |
}
|
249 |
return status
|
250 |
|
|
|
|
|
251 |
if __name__ == "__main__":
|
252 |
import uvicorn
|
253 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
+
import transformers
|
2 |
+
import pickle
|
3 |
import os
|
4 |
import re
|
5 |
import numpy as np
|
6 |
+
import torchvision
|
7 |
+
import nltk
|
8 |
import torch
|
9 |
import pandas as pd
|
10 |
import requests
|
11 |
+
import zipfile
|
12 |
+
import tempfile
|
13 |
+
from openai import OpenAI
|
14 |
+
from PyPDF2 import PdfReader
|
15 |
from fastapi import FastAPI, HTTPException
|
16 |
from fastapi.middleware.cors import CORSMiddleware
|
17 |
from pydantic import BaseModel
|
18 |
from transformers import (
|
19 |
AutoTokenizer,
|
20 |
AutoModelForSeq2SeqLM,
|
21 |
+
AutoModelForTokenClassification,
|
22 |
+
AutoModelForCausalLM,
|
23 |
+
pipeline,
|
24 |
+
Qwen2Tokenizer,
|
25 |
+
BartForConditionalGeneration
|
26 |
)
|
27 |
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
28 |
from sklearn.metrics.pairwise import cosine_similarity
|
29 |
from bs4 import BeautifulSoup
|
30 |
from huggingface_hub import hf_hub_download
|
31 |
+
from safetensors.torch import load_file
|
32 |
from typing import List, Dict, Optional
|
33 |
+
from safetensors.numpy import load_file
|
34 |
+
from safetensors.torch import safe_open
|
35 |
+
nltk.download('punkt_tab')
|
36 |
+
|
37 |
|
38 |
app = FastAPI()
|
39 |
app.add_middleware(
|
|
|
43 |
allow_methods=["*"],
|
44 |
allow_headers=["*"],
|
45 |
)
|
|
|
46 |
models = {}
|
47 |
data = {}
|
48 |
|
|
|
53 |
class ChatQuery(BaseModel):
|
54 |
query: str
|
55 |
language_code: int = 1
|
56 |
+
#conversation_id: str
|
57 |
+
|
58 |
+
class ChatMessage(BaseModel):
|
59 |
+
role: str
|
60 |
+
content: str
|
61 |
+
timestamp: str
|
62 |
+
|
63 |
+
def init_nltk():
|
64 |
+
try:
|
65 |
+
nltk.download('punkt', quiet=True)
|
66 |
+
return True
|
67 |
+
except Exception as e:
|
68 |
+
print(f"Error initializing NLTK: {e}")
|
69 |
+
return False
|
70 |
+
|
71 |
|
72 |
def get_completion(prompt: str, model: str = "deepseek/deepseek-prover-v2:free") -> str:
|
73 |
api_key = os.environ.get('OPENROUTER_API_KEY')
|
|
|
111 |
|
112 |
def load_models():
|
113 |
try:
|
114 |
+
print("Loading models...")
|
115 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
116 |
print(f"Device set to use {device}")
|
|
|
|
|
117 |
models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
118 |
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
|
119 |
models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
121 |
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
122 |
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
123 |
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
124 |
+
models['att_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base")
|
125 |
+
models['att_model'] = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
|
126 |
+
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
|
127 |
+
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
|
128 |
+
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
|
129 |
+
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
|
130 |
+
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
|
131 |
+
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
|
132 |
+
models['gen_tokenizer'] = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct")
|
133 |
+
models['gen_model'] = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct")
|
134 |
+
print("Models loaded successfully")
|
135 |
return True
|
136 |
except Exception as e:
|
137 |
+
print(f"Error loading models: {e}")
|
138 |
return False
|
139 |
|
140 |
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
|
|
|
168 |
print(f"Error loading embeddings: {e}")
|
169 |
return None
|
170 |
|
171 |
+
def normalize_key(key: str) -> str:
|
172 |
+
match = re.search(r'file_(\d+)', key)
|
173 |
+
if match:
|
174 |
+
return match.group(1)
|
175 |
+
return key
|
176 |
+
|
177 |
+
def load_recipes_embeddings() -> Optional[np.ndarray]:
|
178 |
+
try:
|
179 |
+
embeddings_path = 'recipes_embeddings.safetensors'
|
180 |
+
if not os.path.exists(embeddings_path):
|
181 |
+
print("File not found locally. Attempting to download from Hugging Face Hub...")
|
182 |
+
embeddings_path = hf_hub_download(
|
183 |
+
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
|
184 |
+
filename="embeddings.safetensors",
|
185 |
+
repo_type="space"
|
186 |
+
)
|
187 |
+
embeddings = load_file(embeddings_path)
|
188 |
+
if "embeddings" not in embeddings:
|
189 |
+
raise ValueError("Key 'embeddings' not found in the safetensors file.")
|
190 |
+
tensor = embeddings["embeddings"]
|
191 |
+
print(f"Successfully loaded embeddings.")
|
192 |
+
print(f"Shape of embeddings: {tensor.shape}")
|
193 |
+
print(f"Dtype of embeddings: {tensor.dtype}")
|
194 |
+
print(f"First few values of the first embedding: {tensor[0][:5]}")
|
195 |
+
return tensor
|
196 |
+
except Exception as e:
|
197 |
+
print(f"Error loading embeddings: {e}")
|
198 |
+
return None
|
199 |
+
|
200 |
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
|
201 |
try:
|
202 |
print("Loading documents data...")
|
203 |
if not os.path.exists(folder_path) or not os.path.isdir(folder_path):
|
204 |
print(f"Error: Folder '{folder_path}' not found")
|
205 |
return False
|
|
|
206 |
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')]
|
207 |
if not html_files:
|
208 |
print(f"No HTML files found in folder '{folder_path}'")
|
209 |
return False
|
|
|
210 |
documents = []
|
211 |
for file_name in html_files:
|
212 |
file_path = os.path.join(folder_path, file_name)
|
|
|
217 |
documents.append({"file_name": file_name, "content": text})
|
218 |
except Exception as e:
|
219 |
print(f"Error reading file {file_name}: {e}")
|
220 |
+
data['df'] = pd.DataFrame(documents)
|
221 |
+
if data['df'].empty:
|
222 |
+
print("No valid documents loaded.")
|
223 |
+
return False
|
224 |
+
print(f"Successfully loaded {len(data['df'])} document records.")
|
225 |
+
return True
|
|
|
|
|
226 |
except Exception as e:
|
227 |
print(f"Error loading docs: {e}")
|
228 |
return None
|
229 |
|
230 |
+
def load_data():
|
231 |
+
embeddings_success = load_embeddings()
|
232 |
+
documents_success = load_documents_data()
|
233 |
+
if not embeddings_success:
|
234 |
+
print("Warning: Failed to load embeddings, falling back to basic functionality")
|
235 |
+
if not documents_success:
|
236 |
+
print("Warning: Failed to load documents data, falling back to basic functionality")
|
237 |
+
return True
|
238 |
+
|
239 |
+
print("Initializing application...")
|
240 |
+
init_success = load_models() and load_data()
|
241 |
+
|
242 |
+
|
243 |
+
def translate_text(text, source_to_target='ar_to_en'):
|
244 |
+
try:
|
245 |
+
if source_to_target == 'ar_to_en':
|
246 |
+
tokenizer = models['ar_to_en_tokenizer']
|
247 |
+
model = models['ar_to_en_model']
|
248 |
+
else:
|
249 |
+
tokenizer = models['en_to_ar_tokenizer']
|
250 |
+
model = models['en_to_ar_model']
|
251 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True)
|
252 |
+
outputs = model.generate(**inputs)
|
253 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
254 |
+
except Exception as e:
|
255 |
+
print(f"Translation error: {e}")
|
256 |
+
return text
|
257 |
+
|
258 |
def embed_query_text(query_text):
|
259 |
embedding = models['embedding_model']
|
260 |
query_embedding = embedding.encode([query_text])
|
|
|
275 |
print(f"Error in query_embeddings: {e}")
|
276 |
return []
|
277 |
|
278 |
+
def query_recipes_embeddings(query_embedding, embeddings_data, n_results):
|
279 |
+
embeddings_data = load_recipes_embeddings()
|
280 |
+
if embeddings_data is None:
|
281 |
+
print("No embeddings data available.")
|
282 |
+
return []
|
283 |
+
try:
|
284 |
+
if query_embedding.ndim == 1:
|
285 |
+
query_embedding = query_embedding.reshape(1, -1)
|
286 |
+
similarities = cosine_similarity(query_embedding, embeddings_data).flatten()
|
287 |
+
top_indices = similarities.argsort()[-n_results:][::-1]
|
288 |
+
return [(index, similarities[index]) for index in top_indices]
|
289 |
+
except Exception as e:
|
290 |
+
print(f"Error in query_recipes_embeddings: {e}")
|
291 |
+
return []
|
292 |
+
|
293 |
+
def get_page_title(url):
|
294 |
+
try:
|
295 |
+
response = requests.get(url)
|
296 |
+
if response.status_code == 200:
|
297 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
298 |
+
title = soup.find('title')
|
299 |
+
return title.get_text() if title else "No title found"
|
300 |
+
else:
|
301 |
+
return None
|
302 |
+
except requests.exceptions.RequestException:
|
303 |
+
return None
|
304 |
+
|
305 |
def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'):
|
306 |
texts = []
|
307 |
for doc_id in doc_ids:
|
|
|
320 |
texts.append("")
|
321 |
return texts
|
322 |
|
323 |
+
def retrieve_rec_texts(
|
324 |
+
document_indices,
|
325 |
+
folder_path='downloaded_articles/downloaded_articles',
|
326 |
+
metadata_path='recipes_metadata.xlsx'
|
327 |
+
):
|
328 |
+
try:
|
329 |
+
metadata_df = pd.read_excel(metadata_path)
|
330 |
+
if "id" not in metadata_df.columns or "original_file_name" not in metadata_df.columns:
|
331 |
+
raise ValueError("Metadata file must contain 'id' and 'original_file_name' columns.")
|
332 |
+
metadata_df = metadata_df.sort_values(by="id").reset_index(drop=True)
|
333 |
+
if metadata_df.index.max() < max(document_indices):
|
334 |
+
raise ValueError("Some document indices exceed the range of metadata.")
|
335 |
+
document_texts = []
|
336 |
+
for idx in document_indices:
|
337 |
+
if idx >= len(metadata_df):
|
338 |
+
print(f"Warning: Index {idx} is out of range for metadata.")
|
339 |
+
continue
|
340 |
+
original_file_name = metadata_df.iloc[idx]["original_file_name"]
|
341 |
+
if not original_file_name:
|
342 |
+
print(f"Warning: No file name found for index {idx}")
|
343 |
+
continue
|
344 |
+
file_path = os.path.join(folder_path, original_file_name)
|
345 |
+
if os.path.exists(file_path):
|
346 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
347 |
+
document_texts.append(f.read())
|
348 |
+
else:
|
349 |
+
print(f"Warning: File not found at {file_path}")
|
350 |
+
return document_texts
|
351 |
+
except Exception as e:
|
352 |
+
print(f"Error in retrieve_rec_texts: {e}")
|
353 |
+
return []
|
354 |
+
|
355 |
+
def retrieve_metadata(document_indices: List[int], metadata_path: str = 'recipes_metadata.xlsx') -> Dict[int, Dict[str, str]]:
|
356 |
+
try:
|
357 |
+
metadata_df = pd.read_excel(metadata_path)
|
358 |
+
required_columns = {'id', 'original_file_name', 'url'}
|
359 |
+
if not required_columns.issubset(metadata_df.columns):
|
360 |
+
raise ValueError(f"Metadata file must contain columns: {required_columns}")
|
361 |
+
metadata_df['id'] = metadata_df['id'].astype(int)
|
362 |
+
filtered_metadata = metadata_df[metadata_df['id'].isin(document_indices)]
|
363 |
+
metadata_dict = {
|
364 |
+
int(row['id']): {
|
365 |
+
"original_file_name": row['original_file_name'],
|
366 |
+
"url": row['url']
|
367 |
+
}
|
368 |
+
for _, row in filtered_metadata.iterrows()
|
369 |
+
}
|
370 |
+
return metadata_dict
|
371 |
+
except Exception as e:
|
372 |
+
print(f"Error retrieving metadata: {e}")
|
373 |
+
return {}
|
374 |
+
|
375 |
def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
|
376 |
try:
|
377 |
pairs = [(query, doc) for doc in document_texts]
|
|
|
386 |
print(f"Error reranking documents: {e}")
|
387 |
return []
|
388 |
|
389 |
+
def translate_ar_to_en(text):
|
390 |
try:
|
391 |
+
ar_to_en_tokenizer = models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
392 |
+
ar_to_en_model= models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
|
393 |
+
inputs = ar_to_en_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
394 |
+
translated_ids = ar_to_en_model.generate(
|
395 |
+
inputs.input_ids,
|
396 |
+
max_length=512,
|
397 |
+
num_beams=4,
|
398 |
+
early_stopping=True
|
399 |
+
)
|
400 |
+
translated_text = ar_to_en_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
401 |
+
return translated_text
|
402 |
except Exception as e:
|
403 |
+
print(f"Error during Arabic to English translation: {e}")
|
404 |
+
return None
|
405 |
+
|
406 |
+
def translate_en_to_ar(text):
|
407 |
+
try:
|
408 |
+
en_to_ar_tokenizer = models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
409 |
+
en_to_ar_model = models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
|
410 |
+
inputs = en_to_ar_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
411 |
+
translated_ids = en_to_ar_model.generate(
|
412 |
+
inputs.input_ids,
|
413 |
+
max_length=512,
|
414 |
+
num_beams=4,
|
415 |
+
early_stopping=True
|
416 |
+
)
|
417 |
+
translated_text = en_to_ar_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
418 |
+
return translated_text
|
419 |
+
except Exception as e:
|
420 |
+
print(f"Error during English to Arabic translation: {e}")
|
421 |
+
return None
|
422 |
+
|
423 |
|
424 |
@app.get("/")
|
425 |
async def root():
|
|
|
436 |
}
|
437 |
return status
|
438 |
|
439 |
+
if not init_success:
|
440 |
+
print("Warning: Application initialized with partial functionality")
|
441 |
if __name__ == "__main__":
|
442 |
import uvicorn
|
443 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|