thechaiexperiment commited on
Commit
502fd27
·
verified ·
1 Parent(s): 811a449

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -61
app.py CHANGED
@@ -536,67 +536,67 @@ def remove_incomplete_sentence(text):
536
  return text
537
 
538
 
539
- language_code = 1
540
- query_text = "recipes and meals for vegan diabetes headache fatigue"
541
- print(f"Generated query text: {query_text}")
542
-
543
- # Generate the query embedding
544
- query_embedding = embed_query_text(query_text)
545
- if query_embedding is None:
546
- raise ValueError("Failed to generate query embedding.")
547
-
548
- # Load embeddings and retrieve initial results
549
- embeddings_data = load_recipes_embeddings()
550
- folder_path = 'downloaded_articles/downloaded_articles'
551
- initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results=10)
552
- if not initial_results:
553
- raise ValueError("No relevant recipes found.")
554
- print(initial_results)
555
- # Extract document IDs
556
- document_ids = [doc_id for doc_id, _ in initial_results]
557
- print(document_ids)
558
- # Retrieve document texts
559
- document_texts = retrieve_rec_texts(document_ids, folder_path)
560
- if not document_texts:
561
- raise ValueError("Failed to retrieve document texts.")
562
- print(document_texts)
563
- # Load recipe metadata from DataFrame
564
- folder_path='downloaded_articles/downloaded_articles'
565
- file_path = 'recipes_metadata.xlsx'
566
- metadata_path = 'recipes_metadata.xlsx'
567
- metadata_df = pd.read_excel(file_path)
568
- relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
569
- print(relevant_portions)
570
- flattened_relevant_portions = []
571
- for doc_id, portions in relevant_portions.items():
572
- flattened_relevant_portions.extend(portions)
573
- unique_selected_parts = remove_duplicates(flattened_relevant_portions)
574
- print(unique_selected_parts)
575
- combined_parts = " ".join(unique_selected_parts)
576
- print(combined_parts)
577
- context = [query_text] + unique_selected_parts
578
- print(context)
579
- entities = extract_entities(query_text)
580
- print(entities)
581
- passage = enhance_passage_with_entities(combined_parts, entities)
582
- print(passage)
583
- prompt = create_prompt(query_text, passage)
584
- print(prompt)
585
- answer = generate_answer(prompt)
586
- print(answer)
587
- answer_part = answer.split("Answer:")[-1].strip()
588
- print(answer_part)
589
- cleaned_answer = remove_answer_prefix(answer_part)
590
- print(cleaned_answer)
591
- final_answer = remove_incomplete_sentence(cleaned_answer)
592
- print(final_answer )
593
- if language_code == 0:
594
- final_answer = translate_en_to_ar(final_answer)
595
- if final_answer:
596
- print("Answer:")
597
- print(final_answer)
598
- else:
599
- print("Sorry, I can't help with that.")
600
 
601
 
602
 
 
536
  return text
537
 
538
 
539
+ language_code = 1
540
+ query_text = "recipes and meals for vegan diabetes headache fatigue"
541
+ print(f"Generated query text: {query_text}")
542
+
543
+ # Generate the query embedding
544
+ query_embedding = embed_query_text(query_text)
545
+ if query_embedding is None:
546
+ raise ValueError("Failed to generate query embedding.")
547
+
548
+ # Load embeddings and retrieve initial results
549
+ embeddings_data = load_recipes_embeddings()
550
+ folder_path = 'downloaded_articles/downloaded_articles'
551
+ initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results=10)
552
+ if not initial_results:
553
+ raise ValueError("No relevant recipes found.")
554
+ print(initial_results)
555
+ # Extract document IDs
556
+ document_ids = [doc_id for doc_id, _ in initial_results]
557
+ print(document_ids)
558
+ # Retrieve document texts
559
+ document_texts = retrieve_rec_texts(document_ids, folder_path)
560
+ if not document_texts:
561
+ raise ValueError("Failed to retrieve document texts.")
562
+ print(document_texts)
563
+ # Load recipe metadata from DataFrame
564
+ folder_path='downloaded_articles/downloaded_articles'
565
+ file_path = 'recipes_metadata.xlsx'
566
+ metadata_path = 'recipes_metadata.xlsx'
567
+ metadata_df = pd.read_excel(file_path)
568
+ relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
569
+ print(relevant_portions)
570
+ flattened_relevant_portions = []
571
+ for doc_id, portions in relevant_portions.items():
572
+ flattened_relevant_portions.extend(portions)
573
+ unique_selected_parts = remove_duplicates(flattened_relevant_portions)
574
+ print(unique_selected_parts)
575
+ combined_parts = " ".join(unique_selected_parts)
576
+ print(combined_parts)
577
+ context = [query_text] + unique_selected_parts
578
+ print(context)
579
+ entities = extract_entities(query_text)
580
+ print(entities)
581
+ passage = enhance_passage_with_entities(combined_parts, entities)
582
+ print(passage)
583
+ prompt = create_prompt(query_text, passage)
584
+ print(prompt)
585
+ answer = generate_answer(prompt)
586
+ print(answer)
587
+ answer_part = answer.split("Answer:")[-1].strip()
588
+ print(answer_part)
589
+ cleaned_answer = remove_answer_prefix(answer_part)
590
+ print(cleaned_answer)
591
+ final_answer = remove_incomplete_sentence(cleaned_answer)
592
+ print(final_answer )
593
+ if language_code == 0:
594
+ final_answer = translate_en_to_ar(final_answer)
595
+ if final_answer:
596
+ print("Answer:")
597
+ print(final_answer)
598
+ else:
599
+ print("Sorry, I can't help with that.")
600
 
601
 
602