Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -768,19 +768,30 @@ async def recipes_endpoint(profile: MedicalProfile):
|
|
768 |
metadata_path = 'recipes_metadata.xlsx'
|
769 |
metadata_df = pd.read_excel(file_path)
|
770 |
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
|
|
|
771 |
flattened_relevant_portions = []
|
772 |
for doc_id, portions in relevant_portions.items():
|
773 |
flattened_relevant_portions.extend(portions)
|
774 |
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
|
|
|
775 |
combined_parts = " ".join(unique_selected_parts)
|
|
|
776 |
context = [query_text] + unique_selected_parts
|
|
|
777 |
entities = extract_entities(query_text)
|
|
|
778 |
passage = enhance_passage_with_entities(combined_parts, entities)
|
|
|
779 |
prompt = create_prompt(query_text, passage)
|
|
|
780 |
answer = generate_answer(prompt)
|
|
|
781 |
answer_part = answer.split("Answer:")[-1].strip()
|
|
|
782 |
cleaned_answer = remove_answer_prefix(answer_part)
|
|
|
783 |
final_answer = remove_incomplete_sentence(cleaned_answer)
|
|
|
784 |
if language_code == 0:
|
785 |
final_answer = translate_en_to_ar(final_answer)
|
786 |
if final_answer:
|
|
|
768 |
metadata_path = 'recipes_metadata.xlsx'
|
769 |
metadata_df = pd.read_excel(file_path)
|
770 |
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
|
771 |
+
print(relevant_portions)
|
772 |
flattened_relevant_portions = []
|
773 |
for doc_id, portions in relevant_portions.items():
|
774 |
flattened_relevant_portions.extend(portions)
|
775 |
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
|
776 |
+
print(unique_selected_parts)
|
777 |
combined_parts = " ".join(unique_selected_parts)
|
778 |
+
print(combined_parts)
|
779 |
context = [query_text] + unique_selected_parts
|
780 |
+
print(context)
|
781 |
entities = extract_entities(query_text)
|
782 |
+
print(entities)
|
783 |
passage = enhance_passage_with_entities(combined_parts, entities)
|
784 |
+
print(passage)
|
785 |
prompt = create_prompt(query_text, passage)
|
786 |
+
print(prompt)
|
787 |
answer = generate_answer(prompt)
|
788 |
+
print(answer)
|
789 |
answer_part = answer.split("Answer:")[-1].strip()
|
790 |
+
print(answer_part)
|
791 |
cleaned_answer = remove_answer_prefix(answer_part)
|
792 |
+
print(cleaned_answer)
|
793 |
final_answer = remove_incomplete_sentence(cleaned_answer)
|
794 |
+
print(final_answer )
|
795 |
if language_code == 0:
|
796 |
final_answer = translate_en_to_ar(final_answer)
|
797 |
if final_answer:
|