Spaces:
Sleeping
Sleeping
Create medical_rag.py
Browse files- medical_rag.py +159 -0
medical_rag.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
import nltk
|
| 4 |
+
from transformers import (
|
| 5 |
+
AutoTokenizer,
|
| 6 |
+
AutoModelForTokenClassification,
|
| 7 |
+
pipeline
|
| 8 |
+
)
|
| 9 |
+
from typing import List, Dict, Optional
|
| 10 |
+
from general_rag import app, models, data, get_completion
|
| 11 |
+
|
| 12 |
+
# Initialize NLTK
|
| 13 |
+
nltk.download('punkt')
|
| 14 |
+
|
| 15 |
+
class MedicalProfile(BaseModel):
|
| 16 |
+
conditions: str
|
| 17 |
+
daily_symptoms: str
|
| 18 |
+
count: int
|
| 19 |
+
|
| 20 |
+
def load_medical_models():
|
| 21 |
+
try:
|
| 22 |
+
print("Loading medical domain models...")
|
| 23 |
+
|
| 24 |
+
# Medical-specific models (only NER, no LLM)
|
| 25 |
+
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
|
| 26 |
+
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
|
| 27 |
+
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
|
| 28 |
+
|
| 29 |
+
print("Medical domain models loaded successfully")
|
| 30 |
+
return True
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Error loading medical models: {e}")
|
| 33 |
+
return False
|
| 34 |
+
|
| 35 |
+
def extract_entities(text):
|
| 36 |
+
try:
|
| 37 |
+
ner_pipeline = models['ner_pipeline']
|
| 38 |
+
ner_results = ner_pipeline(text)
|
| 39 |
+
entities = {result['word'] for result in ner_results if result['entity'].startswith("B-")}
|
| 40 |
+
return list(entities)
|
| 41 |
+
except Exception as e:
|
| 42 |
+
print(f"Error extracting entities: {e}")
|
| 43 |
+
return []
|
| 44 |
+
|
| 45 |
+
def match_entities(query_entities, sentence_entities):
|
| 46 |
+
try:
|
| 47 |
+
query_set, sentence_set = set(query_entities), set(sentence_entities)
|
| 48 |
+
matches = query_set.intersection(sentence_set)
|
| 49 |
+
return len(matches)
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Error matching entities: {e}")
|
| 52 |
+
return 0
|
| 53 |
+
|
| 54 |
+
def extract_relevant_portions(document_texts, query, max_portions=3, portion_size=1, min_query_words=2):
|
| 55 |
+
relevant_portions = {}
|
| 56 |
+
query_entities = extract_entities(query)
|
| 57 |
+
print(f"Extracted Query Entities: {query_entities}")
|
| 58 |
+
|
| 59 |
+
for doc_id, doc_text in enumerate(document_texts):
|
| 60 |
+
sentences = nltk.sent_tokenize(doc_text)
|
| 61 |
+
doc_relevant_portions = []
|
| 62 |
+
doc_entities = extract_entities(doc_text)
|
| 63 |
+
print(f"Document {doc_id} Entities: {doc_entities}")
|
| 64 |
+
|
| 65 |
+
for i, sentence in enumerate(sentences):
|
| 66 |
+
sentence_entities = extract_entities(sentence)
|
| 67 |
+
relevance_score = match_entities(query_entities, sentence_entities)
|
| 68 |
+
if relevance_score >= min_query_words:
|
| 69 |
+
start_idx = max(0, i - portion_size // 2)
|
| 70 |
+
end_idx = min(len(sentences), i + portion_size // 2 + 1)
|
| 71 |
+
portion = " ".join(sentences[start_idx:end_idx])
|
| 72 |
+
doc_relevant_portions.append(portion)
|
| 73 |
+
if len(doc_relevant_portions) >= max_portions:
|
| 74 |
+
break
|
| 75 |
+
|
| 76 |
+
if not doc_relevant_portions and len(doc_entities) > 0:
|
| 77 |
+
print(f"Fallback: Selecting sentences with most entities for Document {doc_id}")
|
| 78 |
+
sorted_sentences = sorted(sentences, key=lambda s: len(extract_entities(s)), reverse=True)
|
| 79 |
+
for fallback_sentence in sorted_sentences[:max_portions]:
|
| 80 |
+
doc_relevant_portions.append(fallback_sentence)
|
| 81 |
+
|
| 82 |
+
relevant_portions[f"Document_{doc_id}"] = doc_relevant_portions
|
| 83 |
+
return relevant_portions
|
| 84 |
+
|
| 85 |
+
def enhance_passage_with_entities(passage, entities):
|
| 86 |
+
return f"{passage}\n\nEntities: {', '.join(entities)}"
|
| 87 |
+
|
| 88 |
+
def create_medical_prompt(question, passage):
|
| 89 |
+
prompt = ("""
|
| 90 |
+
As a medical expert, you are required to answer the following question based only on the provided passage.
|
| 91 |
+
Do not include any information not present in the passage.
|
| 92 |
+
Your response should directly reflect the content of the passage.
|
| 93 |
+
Maintain accuracy and relevance to the provided information.
|
| 94 |
+
Provide a medically reliable answer in no more than 250 words.
|
| 95 |
+
|
| 96 |
+
Passage: {passage}
|
| 97 |
+
|
| 98 |
+
Question: {question}
|
| 99 |
+
|
| 100 |
+
Answer:
|
| 101 |
+
""")
|
| 102 |
+
return prompt.format(passage=passage, question=question)
|
| 103 |
+
|
| 104 |
+
@app.post("/api/chat")
|
| 105 |
+
async def chat_endpoint(chat_query: ChatQuery):
|
| 106 |
+
try:
|
| 107 |
+
query_text = chat_query.query
|
| 108 |
+
language_code = chat_query.language_code
|
| 109 |
+
if language_code == 0:
|
| 110 |
+
query_text = translate_text(query_text, 'ar_to_en')
|
| 111 |
+
|
| 112 |
+
# Generate embeddings and retrieve relevant documents
|
| 113 |
+
query_embedding = embed_query_text(query_text)
|
| 114 |
+
n_results = 5
|
| 115 |
+
embeddings_data = load_embeddings()
|
| 116 |
+
folder_path = 'downloaded_articles/downloaded_articles'
|
| 117 |
+
initial_results = query_embeddings(query_embedding, embeddings_data, n_results)
|
| 118 |
+
document_ids = [doc_id for doc_id, _ in initial_results]
|
| 119 |
+
document_texts = retrieve_document_texts(document_ids, folder_path)
|
| 120 |
+
|
| 121 |
+
# Rerank documents with cross-encoder
|
| 122 |
+
cross_encoder = models['cross_encoder']
|
| 123 |
+
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
|
| 124 |
+
scored_documents = list(zip(scores, document_ids, document_texts))
|
| 125 |
+
scored_documents.sort(key=lambda x: x[0], reverse=True)
|
| 126 |
+
|
| 127 |
+
# Extract relevant portions from documents using medical-specific function
|
| 128 |
+
relevant_portions = extract_relevant_portions(document_texts, query_text)
|
| 129 |
+
flattened_relevant_portions = []
|
| 130 |
+
for doc_id, portions in relevant_portions.items():
|
| 131 |
+
flattened_relevant_portions.extend(portions)
|
| 132 |
+
|
| 133 |
+
combined_parts = " ".join(flattened_relevant_portions)
|
| 134 |
+
entities = extract_entities(query_text)
|
| 135 |
+
passage = enhance_passage_with_entities(combined_parts, entities)
|
| 136 |
+
|
| 137 |
+
# Create medical-specific prompt and get completion from DeepSeek
|
| 138 |
+
prompt = create_medical_prompt(query_text, passage)
|
| 139 |
+
answer = get_completion(prompt)
|
| 140 |
+
|
| 141 |
+
final_answer = answer.strip()
|
| 142 |
+
if language_code == 0:
|
| 143 |
+
final_answer = translate_text(final_answer, 'en_to_ar')
|
| 144 |
+
|
| 145 |
+
if not final_answer:
|
| 146 |
+
final_answer = "Sorry, I can't help with that."
|
| 147 |
+
|
| 148 |
+
return {
|
| 149 |
+
"response": f"I hope this answers your question: {final_answer}",
|
| 150 |
+
"success": True
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
except HTTPException as e:
|
| 154 |
+
raise e
|
| 155 |
+
except Exception as e:
|
| 156 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 157 |
+
|
| 158 |
+
# Initialize medical models when this module is imported
|
| 159 |
+
load_medical_models()
|