TeaRAG / app.py
thechaiexperiment's picture
Update app.py
471e24c verified
raw
history blame
34 kB
import transformers
import pickle
import os
import re
import numpy as np
import torchvision
import nltk
import torch
import pandas as pd
import requests
import zipfile
import tempfile
from PyPDF2 import PdfReader
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForTokenClassification,
AutoModelForCausalLM,
pipeline,
Qwen2Tokenizer,
BartForConditionalGeneration
)
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from sklearn.metrics.pairwise import cosine_similarity
from bs4 import BeautifulSoup
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from typing import List, Dict, Optional
from safetensors.numpy import load_file
from safetensors.torch import safe_open
nltk.download('punkt_tab')
# Initialize FastAPI app
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global variables for models and data
models = {}
data = {}
class QueryRequest(BaseModel):
query: str
language_code: int = 1
class MedicalProfile(BaseModel):
conditions: str
daily_symptoms: str
class ChatQuery(BaseModel):
query: str
language_code: int = 1
conversation_id: str
class ChatMessage(BaseModel):
role: str
content: str
timestamp: str
def init_nltk():
"""Initialize NLTK resources"""
try:
nltk.download('punkt', quiet=True)
return True
except Exception as e:
print(f"Error initializing NLTK: {e}")
return False
def load_models():
"""Initialize all required models"""
try:
print("Loading models...")
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device set to use {device}")
# Embedding models
models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2')
# Translation models
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
#Attention model
models['att_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base")
models['att_model'] = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
# NER model
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
# LLM model
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
print("Models loaded successfully")
return True
except Exception as e:
print(f"Error loading models: {e}")
return False
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
try:
# Locate or download embeddings file
embeddings_path = 'embeddings.safetensors'
if not os.path.exists(embeddings_path):
print("File not found locally. Attempting to download from Hugging Face Hub...")
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
filename="embeddings.safetensors",
repo_type="space"
)
# Initialize a dictionary to store embeddings
embeddings = {}
# Open the safetensors file
with safe_open(embeddings_path, framework="pt") as f:
keys = f.keys()
#0print(f"Available keys in the .safetensors file: {list(keys)}") # Debugging info
# Iterate over the keys and load tensors
for key in keys:
try:
tensor = f.get_tensor(key)
if not isinstance(tensor, torch.Tensor):
raise TypeError(f"Value for key {key} is not a valid PyTorch tensor.")
# Convert tensor to NumPy array
embeddings[key] = tensor.numpy()
except Exception as key_error:
print(f"Failed to process key {key}: {key_error}")
if embeddings:
print("Embeddings successfully loaded.")
else:
print("No embeddings could be loaded. Please check the file format and content.")
return embeddings
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def normalize_key(key: str) -> str:
"""Normalize embedding keys to match metadata IDs."""
match = re.search(r'file_(\d+)', key)
if match:
return match.group(1) # Extract the numeric part
return key
def load_recipes_embeddings() -> Optional[Dict[str, np.ndarray]]:
try:
embeddings_path = 'recipes_embeddings.safetensors'
if not os.path.exists(embeddings_path):
print("File not found locally. Attempting to download from Hugging Face Hub...")
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
filename="embeddings.safetensors",
repo_type="space"
)
# Using safe_open from safetensors to load embeddings
embeddings = {}
from safetensors.numpy import safe_open
with safe_open(embeddings_path, framework="pt") as f:
keys = list(f.keys())
for key in keys:
try:
normalized_key = normalize_key(key)
tensor = f.get_tensor(key)
embeddings[normalized_key] = tensor.numpy()
except Exception as key_error:
print(f"Failed to process key {key}: {key_error}")
if embeddings:
print(f"Successfully loaded {len(embeddings)} embeddings.")
else:
print("No embeddings could be loaded. Please check the file format and content.")
return embeddings
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
"""Load document data from HTML articles in a specified folder."""
try:
print("Loading documents data...")
# Check if the folder exists
if not os.path.exists(folder_path) or not os.path.isdir(folder_path):
print(f"Error: Folder '{folder_path}' not found")
return False
# List all HTML files in the folder
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')]
if not html_files:
print(f"No HTML files found in folder '{folder_path}'")
return False
documents = []
# Iterate through each HTML file and parse the content
for file_name in html_files:
file_path = os.path.join(folder_path, file_name)
try:
with open(file_path, 'r', encoding='utf-8') as file:
# Parse the HTML file
soup = BeautifulSoup(file, 'html.parser')
# Extract text content (or customize this as per your needs)
text = soup.get_text(separator='\n').strip()
documents.append({"file_name": file_name, "content": text})
except Exception as e:
print(f"Error reading file {file_name}: {e}")
# Convert the list of documents to a DataFrame
data['df'] = pd.DataFrame(documents)
if data['df'].empty:
print("No valid documents loaded.")
return False
print(f"Successfully loaded {len(data['df'])} document records.")
return True
except Exception as e:
print(f"Error loading docs: {e}")
return None
def load_data():
"""Load all required data"""
embeddings_success = load_embeddings()
documents_success = load_documents_data()
if not embeddings_success:
print("Warning: Failed to load embeddings, falling back to basic functionality")
if not documents_success:
print("Warning: Failed to load documents data, falling back to basic functionality")
return True
# Initialize application
print("Initializing application...")
init_success = load_models() and load_data()
def translate_text(text, source_to_target='ar_to_en'):
"""Translate text between Arabic and English"""
try:
if source_to_target == 'ar_to_en':
tokenizer = models['ar_to_en_tokenizer']
model = models['ar_to_en_model']
else:
tokenizer = models['en_to_ar_tokenizer']
model = models['en_to_ar_model']
inputs = tokenizer(text, return_tensors="pt", truncation=True)
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"Translation error: {e}")
return text
def embed_query_text(query_text):
embedding = models['embedding_model']
query_embedding = embedding.encode([query_text])
return query_embedding
def query_embeddings(query_embedding, embeddings_data=None, n_results=5):
embeddings_data = load_embeddings()
if not embeddings_data:
print("No embeddings data available.")
return []
try:
doc_ids = list(embeddings_data.keys())
doc_embeddings = np.array(list(embeddings_data.values()))
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(doc_ids[i], similarities[i]) for i in top_indices]
except Exception as e:
print(f"Error in query_embeddings: {e}")
return []
def query_recipes_embeddings(query_embedding, embeddings_data=None, n_results=5):
embeddings_data = load_recipes_embeddings()
if not embeddings_data:
print("No embeddings data available.")
return []
try:
doc_ids = list(embeddings_data.keys())
doc_embeddings = np.array(list(embeddings_data.values()))
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(doc_ids[i], similarities[i]) for i in top_indices]
except Exception as e:
print(f"Error in query_embeddings: {e}")
return []
def get_page_title(url):
try:
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.find('title')
return title.get_text() if title else "No title found"
else:
return None
except requests.exceptions.RequestException:
return None
def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'):
texts = []
for doc_id in doc_ids:
file_path = os.path.join(folder_path, doc_id)
try:
# Check if the file exists
if not os.path.exists(file_path):
print(f"Warning: Document file not found: {file_path}")
texts.append("")
continue
# Read and parse the HTML file
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
text = soup.get_text(separator=' ', strip=True)
texts.append(text)
except Exception as e:
print(f"Error retrieving document {doc_id}: {e}")
texts.append("")
return texts
def retrieve_rec_texts(document_ids, folder_path='downloaded_articles/downloaded_articles', metadata_path = 'recipes_metadata.xlsx'):
# Load metadata file to map document IDs to original file names
metadata_path = 'recipes_metadata.xlsx'
metadata_df = pd.read_excel(metadata_path)
# Ensure column names are as expected
if "id" not in metadata_df.columns or "original_file_name" not in metadata_df.columns:
raise ValueError("Metadata file must contain 'id' and 'original_file_name' columns.")
# Create a mapping of ID to original file name
id_to_file_name = dict(zip(metadata_df["id"].astype(str), metadata_df["original_file_name"]))
document_texts = []
for doc_id in document_ids:
# Get the original file name for the given document ID
original_file_name = id_to_file_name.get(doc_id)
if not original_file_name:
print(f"Warning: No original file name found for document ID {doc_id}")
continue
# Construct the file path using the original file name
file_path = os.path.join(folder_path, original_file_name)
# Check if the file exists and read its content
if os.path.exists(file_path):
with open(file_path, "r", encoding="utf-8") as f:
document_texts.append(f.read())
else:
print(f"Warning: File not found for {file_path}")
return document_texts
def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
try:
# Prepare pairs for the cross-encoder
pairs = [(query, doc) for doc in document_texts]
# Get scores using the cross-encoder model
scores = cross_encoder_model.predict(pairs)
# Combine scores with document IDs and texts
scored_documents = list(zip(scores, document_ids, document_texts))
# Sort by scores in descending order
scored_documents.sort(key=lambda x: x[0], reverse=True)
# Print reranked results
print("Reranked results:")
for idx, (score, doc_id, doc) in enumerate(scored_documents):
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id})")
return scored_documents
except Exception as e:
print(f"Error reranking documents: {e}")
return []
def extract_entities(text, ner_pipeline=None):
try:
# Use the provided pipeline or default to the model dictionary
if ner_pipeline is None:
ner_pipeline = models['ner_pipeline']
# Perform NER using the pipeline
ner_results = ner_pipeline(text)
# Extract unique entities that start with "B-"
entities = {result['word'] for result in ner_results if result['entity'].startswith("B-")}
return list(entities)
except Exception as e:
print(f"Error extracting entities: {e}")
return []
def match_entities(query_entities, sentence_entities):
try:
query_set, sentence_set = set(query_entities), set(sentence_entities)
matches = query_set.intersection(sentence_set)
return len(matches)
except Exception as e:
print(f"Error matching entities: {e}")
return 0
def extract_relevant_portions(document_texts, query, max_portions=3, portion_size=1, min_query_words=1):
relevant_portions = {}
# Extract entities from the query
query_entities = extract_entities(query)
print(f"Extracted Query Entities: {query_entities}")
for doc_id, doc_text in enumerate(document_texts):
sentences = nltk.sent_tokenize(doc_text) # Split document into sentences
doc_relevant_portions = []
# Extract entities from the entire document
#ner_biobert = models['ner_pipeline']
doc_entities = extract_entities(doc_text)
print(f"Document {doc_id} Entities: {doc_entities}")
for i, sentence in enumerate(sentences):
# Extract entities from the sentence
sentence_entities = extract_entities(sentence)
# Compute relevance score
relevance_score = match_entities(query_entities, sentence_entities)
# Select sentences with at least `min_query_words` matching entities
if relevance_score >= min_query_words:
start_idx = max(0, i - portion_size // 2)
end_idx = min(len(sentences), i + portion_size // 2 + 1)
portion = " ".join(sentences[start_idx:end_idx])
doc_relevant_portions.append(portion)
if len(doc_relevant_portions) >= max_portions:
break
# Fallback: Include most entity-dense sentences if no relevant portions were found
if not doc_relevant_portions and len(doc_entities) > 0:
print(f"Fallback: Selecting sentences with most entities for Document {doc_id}")
sorted_sentences = sorted(sentences, key=lambda s: len(extract_entities(s, ner_biobert)), reverse=True)
for fallback_sentence in sorted_sentences[:max_portions]:
doc_relevant_portions.append(fallback_sentence)
# Add the extracted portions to the result dictionary
relevant_portions[f"Document_{doc_id}"] = doc_relevant_portions
return relevant_portions
def remove_duplicates(selected_parts):
unique_sentences = set()
unique_selected_parts = []
for sentence in selected_parts:
if sentence not in unique_sentences:
unique_selected_parts.append(sentence)
unique_sentences.add(sentence)
return unique_selected_parts
def extract_entities(text):
try:
biobert_tokenizer = models['bio_tokenizer']
biobert_model = models['bio_model']
inputs = biobert_tokenizer(text, return_tensors="pt")
outputs = biobert_model(**inputs)
predictions = torch.argmax(outputs.logits, dim=2)
tokens = biobert_tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
entities = [
tokens[i]
for i in range(len(tokens))
if predictions[0][i].item() != 0 # Assuming 0 is the label for non-entity
]
return entities
except Exception as e:
print(f"Error extracting entities: {e}")
return []
def enhance_passage_with_entities(passage, entities):
return f"{passage}\n\nEntities: {', '.join(entities)}"
def create_prompt(question, passage):
prompt = ("""
As a medical expert, you are required to answer the following question based only on the provided passage. Do not include any information not present in the passage. Your response should directly reflect the content of the passage. Maintain accuracy and relevance to the provided information.
Passage: {passage}
Question: {question}
Answer:
""")
return prompt.format(passage=passage, question=question)
def generate_answer(prompt, max_length=860, temperature=0.2):
tokenizer_f = models['llm_tokenizer']
model_f = models['llm_model']
inputs = tokenizer_f(prompt, return_tensors="pt", truncation=True)
# Start timing
#start_time = time.time()
# Generate the output
output_ids = model_f.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
temperature=temperature,
pad_token_id=tokenizer_f.eos_token_id
)
# End timing
#end_time = time.time()
# Calculate the duration
#duration = end_time - start_time
# Decode the answer
answer = tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
# Extract keywords from the passage and answer
passage_keywords = set(prompt.lower().split()) # Adjusted to check keywords in the full prompt
answer_keywords = set(answer.lower().split())
# Verify if the answer aligns with the passage
if passage_keywords.intersection(answer_keywords):
return answer #, duration
else:
return "Sorry, I can't help with that." #, duration
def remove_answer_prefix(text):
prefix = "Answer:"
if prefix in text:
return text.split(prefix, 1)[-1].strip() # Split only once to avoid splitting at other occurrences of "Answer:"
return text
def remove_incomplete_sentence(text):
# Check if the text ends with a period
if not text.endswith('.'):
# Find the last period or the end of the string
last_period_index = text.rfind('.')
if last_period_index != -1:
# Remove everything after the last period
return text[:last_period_index + 1].strip()
return text
import traceback
language_code = 1
query_text = "recipes and meals for vegan diabetes headache fatigue"
print(f"Generated query text: {query_text}")
try:
# Generate the query embedding
print("Generating query embedding...")
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
print(f"Query embedding generated: {query_embedding}")
# Load embeddings and retrieve initial results
print("Loading recipe embeddings...")
embeddings_data = load_recipes_embeddings()
print("Embeddings loaded. Retrieving initial results...")
initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results=10)
if not initial_results:
raise ValueError("No relevant recipes found.")
print(f"Initial results: {initial_results}")
# Extract document IDs
document_ids = [doc_id for doc_id, _ in initial_results]
print(f"Document IDs: {document_ids}")
# Retrieve document texts
folder_path = 'downloaded_articles/downloaded_articles'
print("Retrieving document texts...")
document_texts = retrieve_rec_texts(document_ids, folder_path)
if not document_texts:
raise ValueError("Failed to retrieve document texts.")
print(f"Document texts retrieved: {document_texts}")
# Load recipe metadata from DataFrame
file_path = 'recipes_metadata.xlsx'
print("Loading metadata from Excel...")
metadata_df = pd.read_excel(file_path)
print(f"Metadata loaded: {metadata_df.head()}")
# Extract relevant portions
print("Extracting relevant portions...")
relevant_portions = extract_relevant_portions(
document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1
)
print(f"Relevant portions: {relevant_portions}")
# Flatten portions
print("Flattening relevant portions...")
flattened_relevant_portions = []
for doc_id, portions in relevant_portions.items():
flattened_relevant_portions.extend(portions)
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
print(f"Unique selected parts: {unique_selected_parts}")
# Combine parts into a single context
combined_parts = " ".join(unique_selected_parts)
print(f"Combined parts: {combined_parts}")
context = [query_text] + unique_selected_parts
print(f"Context: {context}")
# Extract entities
print("Extracting entities...")
entities = extract_entities(query_text)
print(f"Entities: {entities}")
# Enhance passage with entities
print("Enhancing passage with entities...")
passage = enhance_passage_with_entities(combined_parts, entities)
print(f"Enhanced passage: {passage}")
# Create the prompt
print("Creating prompt...")
prompt = create_prompt(query_text, passage)
print(f"Prompt: {prompt}")
# Generate the answer
print("Generating answer...")
answer = generate_answer(prompt)
print(f"Answer: {answer}")
answer_part = answer.split("Answer:")[-1].strip()
print(f"Answer part: {answer_part}")
# Clean and finalize the answer
print("Cleaning answer...")
cleaned_answer = remove_answer_prefix(answer_part)
print(f"Cleaned answer: {cleaned_answer}")
final_answer = remove_incomplete_sentence(cleaned_answer)
print(f"Final answer: {final_answer}")
# Translate if needed
if language_code == 0:
print("Translating answer to Arabic...")
final_answer = translate_en_to_ar(final_answer)
# Display the answer
if final_answer:
print("Final Answer:")
print(final_answer)
else:
print("Sorry, I can't help with that.")
except Exception as e:
print("An error occurred:")
print(traceback.format_exc())
@app.get("/")
async def root():
return {"message": "Welcome to the FastAPI application! Use the /health endpoint to check health, and /api/query for processing queries."}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
status = {
'status': 'healthy',
'models_loaded': bool(models),
'embeddings_loaded': bool(data.get('embeddings')),
'documents_loaded': not data.get('df', pd.DataFrame()).empty
}
return status
@app.post("/api/chat")
async def chat_endpoint(chat_query: ChatQuery):
try:
query_text = chat_query.query
language_code = chat_query.language_code
query_embedding = embed_query_text(query_text) # Embed the query text
embeddings_data = load_embeddings ()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5)
document_ids = [doc_id for doc_id, _ in initial_results]
document_texts = retrieve_document_texts(document_ids, folder_path)
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scored_documents = list(zip(scores, document_ids, document_texts))
scored_documents.sort(key=lambda x: x[0], reverse=True)
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
flattened_relevant_portions = []
for doc_id, portions in relevant_portions.items():
flattened_relevant_portions.extend(portions)
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
combined_parts = " ".join(unique_selected_parts)
context = [query_text] + unique_selected_parts
entities = extract_entities(query_text)
passage = enhance_passage_with_entities(combined_parts, entities)
prompt = create_prompt(query_text, passage)
answer = generate_answer(prompt)
answer_part = answer.split("Answer:")[-1].strip()
cleaned_answer = remove_answer_prefix(answer_part)
final_answer = remove_incomplete_sentence(cleaned_answer)
if language_code == 0:
final_answer = translate_en_to_ar(final_answer)
if final_answer:
print("Answer:")
print(final_answer)
else:
print("Sorry, I can't help with that.")
return {
"response": final_answer,
"conversation_id": chat_query.conversation_id,
"success": True
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/resources")
async def resources_endpoint(profile: MedicalProfile):
try:
# Build the query text
query_text = profile.conditions + " " + profile.daily_symptoms
print(f"Generated query text: {query_text}")
# Generate the query embedding
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
# Load embeddings and retrieve initial results
embeddings_data = load_embeddings()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=6)
if not initial_results:
raise ValueError("No relevant documents found.")
# Extract document IDs
document_ids = [doc_id for doc_id, _ in initial_results]
# Load document metadata (URL mappings)
file_path = 'finalcleaned_excel_file.xlsx'
df = pd.read_excel(file_path)
file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
# Map file names to original URLs
resources = []
for file_name in document_ids:
original_url = file_name_to_url.get(file_name, None)
if original_url:
title = get_page_title(original_url) or "Unknown Title"
resources.append({"file_name": file_name, "title": title, "url": original_url})
else:
resources.append({"file_name": file_name, "title": "Unknown", "url": None})
# Retrieve document texts
document_texts = retrieve_document_texts(document_ids, folder_path)
if not document_texts:
raise ValueError("Failed to retrieve document texts.")
# Perform re-ranking
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scores = [float(score) for score in scores] # Convert to native Python float
# Combine scores with resources
for i, resource in enumerate(resources):
resource["score"] = scores[i] if i < len(scores) else 0.0
# Sort resources by score
resources.sort(key=lambda x: x["score"], reverse=True)
# Limit response to top 5 resources
return {"resources": resources[:5], "success": True}
except ValueError as ve:
# Handle expected errors
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
# Handle unexpected errors
print(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.post("/api/recipes")
async def recipes_endpoint(profile: MedicalProfile):
try:
# Build the query text for recipes
recipe_query = (
f"Recipes foods and meals suitable for someone with: "
f"{profile.conditions} and experiencing {profile.daily_symptoms}"
)
query_text = recipe_query
print(f"Generated query text: {query_text}")
# Generate the query embedding
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
# Load embeddings and retrieve initial results
embeddings_data = load_recipes_embeddings()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results=10)
if not initial_results:
raise ValueError("No relevant recipes found.")
print(initial_results)
# Extract document IDs
document_ids = [doc_id for doc_id, _ in initial_results]
print(document_ids)
# Retrieve document texts
document_texts = retrieve_rec_texts(document_ids, folder_path)
if not document_texts:
raise ValueError("Failed to retrieve document texts.")
print(document_texts)
# Load recipe metadata from DataFrame
folder_path='downloaded_articles/downloaded_articles'
file_path = 'recipes_metadata.xlsx'
metadata_path = 'recipes_metadata.xlsx'
metadata_df = pd.read_excel(file_path)
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
print(relevant_portions)
flattened_relevant_portions = []
for doc_id, portions in relevant_portions.items():
flattened_relevant_portions.extend(portions)
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
print(unique_selected_parts)
combined_parts = " ".join(unique_selected_parts)
print(combined_parts)
context = [query_text] + unique_selected_parts
print(context)
entities = extract_entities(query_text)
print(entities)
passage = enhance_passage_with_entities(combined_parts, entities)
print(passage)
prompt = create_prompt(query_text, passage)
print(prompt)
answer = generate_answer(prompt)
print(answer)
answer_part = answer.split("Answer:")[-1].strip()
print(answer_part)
cleaned_answer = remove_answer_prefix(answer_part)
print(cleaned_answer)
final_answer = remove_incomplete_sentence(cleaned_answer)
print(final_answer )
if language_code == 0:
final_answer = translate_en_to_ar(final_answer)
if final_answer:
print("Answer:")
print(final_answer)
else:
print("Sorry, I can't help with that.")
return {
"response": final_answer,
}
except ValueError as ve:
# Handle expected errors
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
# Handle unexpected errors
print(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
if not init_success:
print("Warning: Application initialized with partial functionality")
# For running locally
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)