Spaces:
Sleeping
Sleeping
import transformers | |
import pickle | |
import os | |
import numpy as np | |
import torchvision | |
import nltk | |
import torch | |
import pandas as pd | |
from fastapi import FastAPI, HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForSeq2SeqLM, | |
AutoModelForTokenClassification, | |
AutoModelForCausalLM, | |
pipeline, | |
Qwen2Tokenizer, | |
BartForConditionalGeneration | |
) | |
from sentence_transformers import SentenceTransformer, CrossEncoder, util | |
from sklearn.metrics.pairwise import cosine_similarity | |
from bs4 import BeautifulSoup | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from typing import List, Dict, Optional | |
from safetensors.numpy import load_file | |
from safetensors.torch import safe_open | |
nltk.download('punkt_tab') | |
# Initialize FastAPI app | |
app = FastAPI() | |
# Add CORS middleware | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Global variables for models and data | |
models = {} | |
data = {} | |
class QueryRequest(BaseModel): | |
query: str | |
language_code: int = 0 | |
class MedicalProfile(BaseModel): | |
chronic_conditions: List[str] | |
symptoms: List[str] | |
food_restrictions: List[str] | |
mental_conditions: List[str] | |
daily_symptoms: List[str] | |
class ChatQuery(BaseModel): | |
query: str | |
conversation_id: str | |
class ChatMessage(BaseModel): | |
role: str | |
content: str | |
timestamp: str | |
def init_nltk(): | |
"""Initialize NLTK resources""" | |
try: | |
nltk.download('punkt', quiet=True) | |
return True | |
except Exception as e: | |
print(f"Error initializing NLTK: {e}") | |
return False | |
def load_models(): | |
"""Initialize all required models""" | |
try: | |
print("Loading models...") | |
# Set device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Device set to use {device}") | |
# Embedding models | |
models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512) | |
models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2') | |
# Translation models | |
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en") | |
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en") | |
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
#Attention model | |
models['att_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base") | |
models['att_model'] = BartForConditionalGeneration.from_pretrained("facebook/bart-base") | |
# NER model | |
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER") | |
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER") | |
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer']) | |
# LLM model | |
model_name = "M4-ai/Orca-2.0-Tau-1.8B" | |
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name) | |
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name) | |
print("Models loaded successfully") | |
return True | |
except Exception as e: | |
print(f"Error loading models: {e}") | |
return False | |
def load_embeddings() -> Optional[Dict[str, np.ndarray]]: | |
try: | |
# Locate or download embeddings file | |
embeddings_path = 'embeddings.safetensors' | |
if not os.path.exists(embeddings_path): | |
print("File not found locally. Attempting to download from Hugging Face Hub...") | |
embeddings_path = hf_hub_download( | |
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'), | |
filename="embeddings.safetensors", | |
repo_type="space" | |
) | |
# Initialize a dictionary to store embeddings | |
embeddings = {} | |
# Open the safetensors file | |
with safe_open(embeddings_path, framework="pt") as f: | |
keys = f.keys() | |
print(f"Available keys in the .safetensors file: {list(keys)}") # Debugging info | |
# Iterate over the keys and load tensors | |
for key in keys: | |
try: | |
tensor = f.get_tensor(key) | |
if not isinstance(tensor, torch.Tensor): | |
raise TypeError(f"Value for key {key} is not a valid PyTorch tensor.") | |
# Convert tensor to NumPy array | |
embeddings[key] = tensor.numpy() | |
except Exception as key_error: | |
print(f"Failed to process key {key}: {key_error}") | |
if embeddings: | |
print("Embeddings successfully loaded.") | |
else: | |
print("No embeddings could be loaded. Please check the file format and content.") | |
return embeddings | |
except Exception as e: | |
print(f"Error loading embeddings: {e}") | |
return None | |
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'): | |
"""Load document data from HTML articles in a specified folder.""" | |
try: | |
print("Loading documents data...") | |
# Check if the folder exists | |
if not os.path.exists(folder_path) or not os.path.isdir(folder_path): | |
print(f"Error: Folder '{folder_path}' not found") | |
return False | |
# List all HTML files in the folder | |
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')] | |
if not html_files: | |
print(f"No HTML files found in folder '{folder_path}'") | |
return False | |
documents = [] | |
# Iterate through each HTML file and parse the content | |
for file_name in html_files: | |
file_path = os.path.join(folder_path, file_name) | |
try: | |
with open(file_path, 'r', encoding='utf-8') as file: | |
# Parse the HTML file | |
soup = BeautifulSoup(file, 'html.parser') | |
# Extract text content (or customize this as per your needs) | |
text = soup.get_text(separator='\n').strip() | |
documents.append({"file_name": file_name, "content": text}) | |
except Exception as e: | |
print(f"Error reading file {file_name}: {e}") | |
# Convert the list of documents to a DataFrame | |
data['df'] = pd.DataFrame(documents) | |
if data['df'].empty: | |
print("No valid documents loaded.") | |
return False | |
print(f"Successfully loaded {len(data['df'])} document records.") | |
return True | |
except Exception as e: | |
print(f"Error loading documents data: {e}") | |
data['df'] = pd.DataFrame() | |
return False | |
def load_data(): | |
"""Load all required data""" | |
embeddings_success = load_embeddings() | |
documents_success = load_documents_data() | |
if not embeddings_success: | |
print("Warning: Failed to load embeddings, falling back to basic functionality") | |
if not documents_success: | |
print("Warning: Failed to load documents data, falling back to basic functionality") | |
return True | |
# Initialize application | |
print("Initializing application...") | |
init_success = load_models() and load_data() | |
def translate_text(text, source_to_target='ar_to_en'): | |
"""Translate text between Arabic and English""" | |
try: | |
if source_to_target == 'ar_to_en': | |
tokenizer = models['ar_to_en_tokenizer'] | |
model = models['ar_to_en_model'] | |
else: | |
tokenizer = models['en_to_ar_tokenizer'] | |
model = models['en_to_ar_model'] | |
inputs = tokenizer(text, return_tensors="pt", truncation=True) | |
outputs = model.generate(**inputs) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
except Exception as e: | |
print(f"Translation error: {e}") | |
return text | |
def embed_query_text(query_text): | |
embedding = models['embedding_model'] | |
query_embedding = embedding.encode([query_text]) | |
return query_embedding | |
def query_embeddings(query_embedding, embeddings_data=None, n_results=5): | |
embeddings_data = load_embeddings() | |
if not embeddings_data: | |
print("No embeddings data available.") | |
return [] | |
try: | |
doc_ids = list(embeddings_data.keys()) | |
doc_embeddings = np.array(list(embeddings_data.values())) | |
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten() | |
top_indices = similarities.argsort()[-n_results:][::-1] | |
return [(doc_ids[i], similarities[i]) for i in top_indices] | |
except Exception as e: | |
print(f"Error in query_embeddings: {e}") | |
return [] | |
def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'): | |
texts = [] | |
for doc_id in doc_ids: | |
file_path = os.path.join(folder_path, doc_id) | |
try: | |
# Check if the file exists | |
if not os.path.exists(file_path): | |
print(f"Warning: Document file not found: {file_path}") | |
texts.append("") | |
continue | |
# Read and parse the HTML file | |
with open(file_path, 'r', encoding='utf-8') as file: | |
soup = BeautifulSoup(file, 'html.parser') | |
text = soup.get_text(separator=' ', strip=True) | |
texts.append(text) | |
except Exception as e: | |
print(f"Error retrieving document {doc_id}: {e}") | |
texts.append("") | |
return texts | |
def rerank_documents(query, document_ids, document_texts, cross_encoder_model): | |
try: | |
# Prepare pairs for the cross-encoder | |
pairs = [(query, doc) for doc in document_texts] | |
# Get scores using the cross-encoder model | |
scores = cross_encoder_model.predict(pairs) | |
# Combine scores with document IDs and texts | |
scored_documents = list(zip(scores, document_ids, document_texts)) | |
# Sort by scores in descending order | |
scored_documents.sort(key=lambda x: x[0], reverse=True) | |
# Print reranked results | |
print("Reranked results:") | |
for idx, (score, doc_id, doc) in enumerate(scored_documents): | |
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id})") | |
return scored_documents | |
except Exception as e: | |
print(f"Error reranking documents: {e}") | |
return [] | |
def extract_entities(text, ner_pipeline=None): | |
try: | |
# Use the provided pipeline or default to the model dictionary | |
if ner_pipeline is None: | |
ner_pipeline = models['ner_pipeline'] | |
# Perform NER using the pipeline | |
ner_results = ner_pipeline(text) | |
# Extract unique entities that start with "B-" | |
entities = {result['word'] for result in ner_results if result['entity'].startswith("B-")} | |
return list(entities) | |
except Exception as e: | |
print(f"Error extracting entities: {e}") | |
return [] | |
def match_entities(query_entities, sentence_entities): | |
try: | |
query_set, sentence_set = set(query_entities), set(sentence_entities) | |
matches = query_set.intersection(sentence_set) | |
return len(matches) | |
except Exception as e: | |
print(f"Error matching entities: {e}") | |
return 0 | |
def extract_relevant_portions(document_texts, query, max_portions=3, portion_size=1, min_query_words=1): | |
relevant_portions = {} | |
# Extract entities from the query | |
#ner_biobert = models['ner_pipeline'] | |
query_entities = extract_entities(query) | |
print(f"Extracted Query Entities: {query_entities}") | |
for doc_id, doc_text in enumerate(document_texts): | |
sentences = nltk.sent_tokenize(doc_text) # Split document into sentences | |
doc_relevant_portions = [] | |
# Extract entities from the entire document | |
doc_entities = extract_entities(doc_text, ner_biobert) | |
print(f"Document {doc_id} Entities: {doc_entities}") | |
for i, sentence in enumerate(sentences): | |
# Extract entities from the sentence | |
sentence_entities = extract_entities(sentence, ner_biobert) | |
# Compute relevance score | |
relevance_score = match_entities(query_entities, sentence_entities) | |
# Select sentences with at least `min_query_words` matching entities | |
if relevance_score >= min_query_words: | |
start_idx = max(0, i - portion_size // 2) | |
end_idx = min(len(sentences), i + portion_size // 2 + 1) | |
portion = " ".join(sentences[start_idx:end_idx]) | |
doc_relevant_portions.append(portion) | |
if len(doc_relevant_portions) >= max_portions: | |
break | |
# Fallback: Include most entity-dense sentences if no relevant portions were found | |
if not doc_relevant_portions and len(doc_entities) > 0: | |
print(f"Fallback: Selecting sentences with most entities for Document {doc_id}") | |
sorted_sentences = sorted(sentences, key=lambda s: len(extract_entities(s, ner_biobert)), reverse=True) | |
for fallback_sentence in sorted_sentences[:max_portions]: | |
doc_relevant_portions.append(fallback_sentence) | |
# Add the extracted portions to the result dictionary | |
relevant_portions[f"Document_{doc_id}"] = doc_relevant_portions | |
return relevant_portions | |
def remove_duplicates(selected_parts): | |
unique_sentences = set() | |
unique_selected_parts = [] | |
for sentence in selected_parts: | |
if sentence not in unique_sentences: | |
unique_selected_parts.append(sentence) | |
unique_sentences.add(sentence) | |
return unique_selected_parts | |
def extract_entities(text): | |
try: | |
inputs = biobert_tokenizer(text, return_tensors="pt") | |
outputs = biobert_model(**inputs) | |
predictions = torch.argmax(outputs.logits, dim=2) | |
tokens = biobert_tokenizer.convert_ids_to_tokens(inputs.input_ids[0]) | |
entities = [ | |
tokens[i] | |
for i in range(len(tokens)) | |
if predictions[0][i].item() != 0 # Assuming 0 is the label for non-entity | |
] | |
return entities | |
except Exception as e: | |
print(f"Error extracting entities: {e}") | |
return [] | |
def enhance_passage_with_entities(passage, entities): | |
return f"{passage}\n\nEntities: {', '.join(entities)}" | |
def create_prompt(question, passage): | |
prompt = (""" | |
As a medical expert, you are required to answer the following question based only on the provided passage. Do not include any information not present in the passage. Your response should directly reflect the content of the passage. Maintain accuracy and relevance to the provided information. | |
Passage: {passage} | |
Question: {question} | |
Answer: | |
""") | |
return prompt.format(passage=passage, question=question) | |
def generate_answer(prompt, max_length=860, temperature=0.2): | |
inputs = tokenizer_f(prompt, return_tensors="pt", truncation=True) | |
# Start timing | |
start_time = time.time() | |
# Generate the output | |
output_ids = model_f.generate( | |
inputs.input_ids, | |
max_length=max_length, | |
num_return_sequences=1, | |
temperature=temperature, | |
pad_token_id=tokenizer_f.eos_token_id | |
) | |
# End timing | |
end_time = time.time() | |
# Calculate the duration | |
duration = end_time - start_time | |
# Decode the answer | |
answer = tokenizer_f.decode(output_ids[0], skip_special_tokens=True) | |
# Extract keywords from the passage and answer | |
passage_keywords = set(prompt.lower().split()) # Adjusted to check keywords in the full prompt | |
answer_keywords = set(answer.lower().split()) | |
# Verify if the answer aligns with the passage | |
if passage_keywords.intersection(answer_keywords): | |
return answer, duration | |
else: | |
return "Sorry, I can't help with that.", duration | |
def remove_answer_prefix(text): | |
prefix = "Answer:" | |
if prefix in text: | |
return text.split(prefix, 1)[-1].strip() # Split only once to avoid splitting at other occurrences of "Answer:" | |
return text | |
def remove_incomplete_sentence(text): | |
# Check if the text ends with a period | |
if not text.endswith('.'): | |
# Find the last period or the end of the string | |
last_period_index = text.rfind('.') | |
if last_period_index != -1: | |
# Remove everything after the last period | |
return text[:last_period_index + 1].strip() | |
return text | |
language_code = 1 | |
query_text = 'What are symptoms of heart attack ?' | |
query_embedding = embed_query_text(query_text) # Embed the query text | |
embeddings_data = load_embeddings () | |
folder_path = 'downloaded_articles/downloaded_articles' | |
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5) | |
document_ids = [doc_id for doc_id, _ in initial_results] | |
print(document_ids) | |
document_ids = [doc_id for doc_id, _ in initial_results] | |
document_texts = retrieve_document_texts(document_ids, folder_path) | |
# Rerank the results using the CrossEncoder | |
cross_encoder = models['cross_encoder'] | |
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts]) | |
scored_documents = list(zip(scores, document_ids, document_texts)) | |
scored_documents.sort(key=lambda x: x[0], reverse=True) | |
print("Reranked results:") | |
for idx, (score, doc_id, doc) in enumerate(scored_documents): | |
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id}") | |
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1) | |
for doc_id, portions in relevant_portions.items(): | |
print(f"{doc_id}: {portions}") | |
flattened_relevant_portions = [] | |
for doc_id, portions in relevant_portions.items(): | |
flattened_relevant_portions.extend(portions) | |
# Remove duplicate portions | |
unique_selected_parts = remove_duplicates(flattened_relevant_portions) | |
# Combine the unique parts into a single string of context | |
combined_parts = " ".join(unique_selected_parts) | |
# Construct context as a list: first the query, then the unique selected portions | |
context = [query_text] + unique_selected_parts | |
# Print the context (query + relevant portions) | |
print(context) | |
entities = extract_entities(query_text) | |
passage = enhance_passage_with_entities(combined_parts, entities) | |
# Generate answer with the enhanced passage | |
prompt = create_prompt(query_text, passage) | |
answer, generation_time = generate_answer(prompt) | |
print(f"\nTime taken to generate the answer: {generation_time:.2f} seconds") | |
answer_part = answer.split("Answer:")[-1].strip() | |
cleaned_answer = remove_answer_prefix(answer_part) | |
final_answer = remove_incomplete_sentence(cleaned_answer) | |
if language_code == 0: | |
final_answer = translate_en_to_ar(final_answer) | |
if final_answer: | |
print("Answer:") | |
print(final_answer) | |
else: | |
print("Sorry, I can't help with that.") | |
async def root(): | |
return {"message": "Welcome to the FastAPI application! Use the /health endpoint to check health, and /api/query for processing queries."} | |
async def health_check(): | |
"""Health check endpoint""" | |
status = { | |
'status': 'healthy', | |
'models_loaded': bool(models), | |
'embeddings_loaded': bool(data.get('embeddings')), | |
'documents_loaded': not data.get('df', pd.DataFrame()).empty | |
} | |
return status | |
async def chat_endpoint(chat_query: ChatQuery): | |
try: | |
query_text = chat_query.query | |
# Step 1: Embed the query | |
query_embedding = embed_query_text(query_text) | |
# Step 2: Retrieve top results using embeddings similarity | |
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5) | |
document_ids = [doc_id for doc_id, _ in initial_results] | |
# Step 3: Fetch document texts | |
document_texts = retrieve_document_texts(document_ids, folder_path) | |
# Step 4: Re-rank documents (optional, if reranking is used) | |
reranked_documents = rerank_documents(query_text, document_ids, document_texts, cross_encoder_model) | |
# Step 5: Extract relevant portions (if enabled) | |
relevant_portions = extract_relevant_portions( | |
document_texts, | |
query=query_text, | |
max_portions=3, | |
portion_size=1, | |
min_query_words=1 | |
) | |
# Step 6: Flatten and clean relevant portions | |
flattened_relevant_portions = [] | |
for doc_id, portions in relevant_portions.items(): | |
flattened_relevant_portions.extend(portions) | |
unique_selected_parts = remove_duplicates(flattened_relevant_portions) | |
combined_parts = " ".join(unique_selected_parts) | |
# Step 7: Extract entities and enhance passage | |
entities = extract_entities(query_text) | |
passage = enhance_passage_with_entities(combined_parts, entities) | |
# Step 8: Create prompt and generate answer | |
prompt = create_prompt(query_text, passage) | |
answer, generation_time = generate_answer(prompt) | |
# Step 9: Clean the generated answer | |
answer_part = answer.split("Answer:")[-1].strip() | |
cleaned_answer = remove_answer_prefix(answer_part) | |
final_answer = remove_incomplete_sentence(cleaned_answer) | |
return { | |
"response": final_answer, | |
"conversation_id": chat_query.conversation_id, | |
"success": True | |
} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def resources_endpoint(profile: MedicalProfile): | |
try: | |
context = f""" | |
Medical conditions: {', '.join(profile.chronic_conditions)} | |
Current symptoms: {', '.join(profile.daily_symptoms)} | |
Restrictions: {', '.join(profile.food_restrictions)} | |
Mental health: {', '.join(profile.mental_conditions)} | |
""" | |
query_embedding = models['embedding'].encode([context]) | |
relevant_docs = query_embeddings(query_embedding) | |
doc_texts = [retrieve_document_text(doc_id) for doc_id, _ in relevant_docs] | |
doc_texts = [text for text in doc_texts if text.strip()] | |
rerank_scores = rerank_documents(context, doc_texts) | |
ranked_docs = sorted(zip(relevant_docs, rerank_scores, doc_texts), key=lambda x: x[1], reverse=True) | |
resources = [] | |
for (doc_id, _), score, text in ranked_docs[:10]: | |
doc_info = data['df'][data['df']['id'] == doc_id].iloc[0] | |
resources.append({ | |
"id": doc_id, | |
"title": doc_info['title'], | |
"content": text[:200], | |
"score": float(score) | |
}) | |
return {"resources": resources, "success": True} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def recipes_endpoint(profile: MedicalProfile): | |
try: | |
recipe_query = f"Recipes and meals suitable for someone with: {', '.join(profile.chronic_conditions + profile.food_restrictions)}" | |
query_embedding = models['embedding'].encode([recipe_query]) | |
relevant_docs = query_embeddings(query_embedding) | |
doc_texts = [retrieve_document_text(doc_id) for doc_id, _ in relevant_docs] | |
doc_texts = [text for text in doc_texts if text.strip()] | |
rerank_scores = rerank_documents(recipe_query, doc_texts) | |
ranked_docs = sorted(zip(relevant_docs, rerank_scores, doc_texts), key=lambda x: x[1], reverse=True) | |
recipes = [] | |
for (doc_id, _), score, text in ranked_docs[:10]: | |
doc_info = data['df'][data['df']['id'] == doc_id].iloc[0] | |
if 'recipe' in text.lower() or 'meal' in text.lower(): | |
recipes.append({ | |
"id": doc_id, | |
"title": doc_info['title'], | |
"content": text[:200], | |
"score": float(score) | |
}) | |
return {"recipes": recipes[:5], "success": True} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
if not init_success: | |
print("Warning: Application initialized with partial functionality") | |
# For running locally | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |