TeaRAG / app.py
thechaiexperiment's picture
Update app.py
b1a0f01 verified
raw
history blame
32.9 kB
import transformers
import pickle
import os
import re
import numpy as np
import torchvision
import nltk
import torch
import pandas as pd
import requests
import zipfile
import tempfile
from PyPDF2 import PdfReader
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForTokenClassification,
AutoModelForCausalLM,
pipeline,
Qwen2Tokenizer,
BartForConditionalGeneration
)
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from sklearn.metrics.pairwise import cosine_similarity
from bs4 import BeautifulSoup
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from typing import List, Dict, Optional
from safetensors.numpy import load_file
from safetensors.torch import safe_open
nltk.download('punkt_tab')
# Initialize FastAPI app
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global variables for models and data
models = {}
data = {}
class QueryRequest(BaseModel):
query: str
language_code: int = 1
class MedicalProfile(BaseModel):
conditions: str
daily_symptoms: str
class ChatQuery(BaseModel):
query: str
language_code: int = 1
conversation_id: str
class ChatMessage(BaseModel):
role: str
content: str
timestamp: str
def init_nltk():
"""Initialize NLTK resources"""
try:
nltk.download('punkt', quiet=True)
return True
except Exception as e:
print(f"Error initializing NLTK: {e}")
return False
def load_models():
"""Initialize all required models"""
try:
print("Loading models...")
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device set to use {device}")
# Embedding models
models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2')
# Translation models
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
#Attention model
models['att_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base")
models['att_model'] = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
# NER model
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
# LLM model
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
print("Models loaded successfully")
return True
except Exception as e:
print(f"Error loading models: {e}")
return False
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
try:
# Locate or download embeddings file
embeddings_path = 'embeddings.safetensors'
if not os.path.exists(embeddings_path):
print("File not found locally. Attempting to download from Hugging Face Hub...")
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
filename="embeddings.safetensors",
repo_type="space"
)
# Initialize a dictionary to store embeddings
embeddings = {}
# Open the safetensors file
with safe_open(embeddings_path, framework="pt") as f:
keys = f.keys()
#0print(f"Available keys in the .safetensors file: {list(keys)}") # Debugging info
# Iterate over the keys and load tensors
for key in keys:
try:
tensor = f.get_tensor(key)
if not isinstance(tensor, torch.Tensor):
raise TypeError(f"Value for key {key} is not a valid PyTorch tensor.")
# Convert tensor to NumPy array
embeddings[key] = tensor.numpy()
except Exception as key_error:
print(f"Failed to process key {key}: {key_error}")
if embeddings:
print("Embeddings successfully loaded.")
else:
print("No embeddings could be loaded. Please check the file format and content.")
return embeddings
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def normalize_key(key: str) -> str:
"""Normalize embedding keys to match metadata IDs."""
match = re.search(r'file_(\d+)', key)
if match:
return match.group(1) # Extract the numeric part
return key
import os
import numpy as np
from typing import Optional
from safetensors.numpy import load_file
from huggingface_hub import hf_hub_download
def load_recipes_embeddings() -> Optional[np.ndarray]:
"""
Loads recipe embeddings from a .safetensors file, handling local and remote downloads.
Returns:
Optional[np.ndarray]: A numpy array containing all embeddings (shape: (num_recipes, embedding_dim)).
"""
try:
embeddings_path = 'recipes_embeddings.safetensors'
# Check if file exists locally, otherwise download from Hugging Face Hub
if not os.path.exists(embeddings_path):
print("File not found locally. Attempting to download from Hugging Face Hub...")
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
filename="embeddings.safetensors",
repo_type="space"
)
# Load the embeddings tensor from the .safetensors file
embeddings = load_file(embeddings_path)
# Ensure the key 'embeddings' exists in the file
if "embeddings" not in embeddings:
raise ValueError("Key 'embeddings' not found in the safetensors file.")
# Retrieve the tensor as a numpy array
tensor = embeddings["embeddings"]
# Print information about the embeddings
print(f"Successfully loaded embeddings.")
print(f"Shape of embeddings: {tensor.shape}")
print(f"Dtype of embeddings: {tensor.dtype}")
print(f"First few values of the first embedding: {tensor[0][:5]}")
return tensor
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
"""Load document data from HTML articles in a specified folder."""
try:
print("Loading documents data...")
# Check if the folder exists
if not os.path.exists(folder_path) or not os.path.isdir(folder_path):
print(f"Error: Folder '{folder_path}' not found")
return False
# List all HTML files in the folder
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')]
if not html_files:
print(f"No HTML files found in folder '{folder_path}'")
return False
documents = []
# Iterate through each HTML file and parse the content
for file_name in html_files:
file_path = os.path.join(folder_path, file_name)
try:
with open(file_path, 'r', encoding='utf-8') as file:
# Parse the HTML file
soup = BeautifulSoup(file, 'html.parser')
# Extract text content (or customize this as per your needs)
text = soup.get_text(separator='\n').strip()
documents.append({"file_name": file_name, "content": text})
except Exception as e:
print(f"Error reading file {file_name}: {e}")
# Convert the list of documents to a DataFrame
data['df'] = pd.DataFrame(documents)
if data['df'].empty:
print("No valid documents loaded.")
return False
print(f"Successfully loaded {len(data['df'])} document records.")
return True
except Exception as e:
print(f"Error loading docs: {e}")
return None
def load_data():
"""Load all required data"""
embeddings_success = load_embeddings()
documents_success = load_documents_data()
if not embeddings_success:
print("Warning: Failed to load embeddings, falling back to basic functionality")
if not documents_success:
print("Warning: Failed to load documents data, falling back to basic functionality")
return True
# Initialize application
print("Initializing application...")
init_success = load_models() and load_data()
def translate_text(text, source_to_target='ar_to_en'):
"""Translate text between Arabic and English"""
try:
if source_to_target == 'ar_to_en':
tokenizer = models['ar_to_en_tokenizer']
model = models['ar_to_en_model']
else:
tokenizer = models['en_to_ar_tokenizer']
model = models['en_to_ar_model']
inputs = tokenizer(text, return_tensors="pt", truncation=True)
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"Translation error: {e}")
return text
def embed_query_text(query_text):
embedding = models['embedding_model']
query_embedding = embedding.encode([query_text])
return query_embedding
def query_embeddings(query_embedding, embeddings_data=None, n_results=5):
embeddings_data = load_embeddings()
if not embeddings_data:
print("No embeddings data available.")
return []
try:
doc_ids = list(embeddings_data.keys())
doc_embeddings = np.array(list(embeddings_data.values()))
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(doc_ids[i], similarities[i]) for i in top_indices]
except Exception as e:
print(f"Error in query_embeddings: {e}")
return []
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
def query_recipes_embeddings(query_embedding, embeddings_data, n_results = 5):
"""
Query the recipes embeddings to find the most similar recipes based on cosine similarity.
Args:
query_embedding (np.ndarray): A 1D numpy array representing the query embedding.
n_results (int): Number of top results to return.
Returns:
List[Tuple[int, float]]: A list of tuples containing the indices of the top results and their similarity scores.
"""
# Load embeddings
embeddings_data = load_recipes_embeddings()
if embeddings_data is None:
print("No embeddings data available.")
return []
try:
# Ensure query_embedding is 2D for cosine similarity computation
if query_embedding.ndim == 1:
query_embedding = query_embedding.reshape(1, -1)
# Compute cosine similarity
similarities = cosine_similarity(query_embedding, embeddings_data).flatten()
# Get the indices of the top N most similar embeddings
top_indices = similarities.argsort()[-n_results:][::-1]
# Return the indices and similarity scores of the top results
return [(index, similarities[index]) for index in top_indices]
except Exception as e:
print(f"Error in query_recipes_embeddings: {e}")
return []
def get_page_title(url):
try:
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.find('title')
return title.get_text() if title else "No title found"
else:
return None
except requests.exceptions.RequestException:
return None
def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'):
texts = []
for doc_id in doc_ids:
file_path = os.path.join(folder_path, doc_id)
try:
# Check if the file exists
if not os.path.exists(file_path):
print(f"Warning: Document file not found: {file_path}")
texts.append("")
continue
# Read and parse the HTML file
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
text = soup.get_text(separator=' ', strip=True)
texts.append(text)
except Exception as e:
print(f"Error retrieving document {doc_id}: {e}")
texts.append("")
return texts
import os
import pandas as pd
def retrieve_rec_texts(
document_indices,
folder_path='downloaded_articles/downloaded_articles',
metadata_path='recipes_metadata.xlsx'
):
"""
Retrieve the texts of documents corresponding to the given indices.
Args:
document_indices (List[int]): A list of document indices to retrieve.
folder_path (str): Path to the folder containing the article files.
metadata_path (str): Path to the metadata file mapping indices to file names.
Returns:
List[str]: A list of document texts corresponding to the given indices.
"""
try:
# Load metadata file to map indices to original file names
metadata_df = pd.read_excel(metadata_path)
# Ensure the metadata file has the required columns
if "id" not in metadata_df.columns or "original_file_name" not in metadata_df.columns:
raise ValueError("Metadata file must contain 'id' and 'original_file_name' columns.")
# Ensure the 'id' column aligns with the embeddings row indices
metadata_df = metadata_df.sort_values(by="id").reset_index(drop=True)
# Verify the alignment of metadata with embeddings indices
if metadata_df.index.max() < max(document_indices):
raise ValueError("Some document indices exceed the range of metadata.")
# Retrieve file names for the given indices
document_texts = []
for idx in document_indices:
if idx >= len(metadata_df):
print(f"Warning: Index {idx} is out of range for metadata.")
continue
original_file_name = metadata_df.iloc[idx]["original_file_name"]
if not original_file_name:
print(f"Warning: No file name found for index {idx}")
continue
# Construct the file path using the original file name
file_path = os.path.join(folder_path, original_file_name)
# Check if the file exists and read its content
if os.path.exists(file_path):
with open(file_path, "r", encoding="utf-8") as f:
document_texts.append(f.read())
else:
print(f"Warning: File not found at {file_path}")
return document_texts
except Exception as e:
print(f"Error in retrieve_rec_texts: {e}")
return []
def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
try:
# Prepare pairs for the cross-encoder
pairs = [(query, doc) for doc in document_texts]
# Get scores using the cross-encoder model
scores = cross_encoder_model.predict(pairs)
# Combine scores with document IDs and texts
scored_documents = list(zip(scores, document_ids, document_texts))
# Sort by scores in descending order
scored_documents.sort(key=lambda x: x[0], reverse=True)
# Print reranked results
print("Reranked results:")
for idx, (score, doc_id, doc) in enumerate(scored_documents):
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id})")
return scored_documents
except Exception as e:
print(f"Error reranking documents: {e}")
return []
def extract_entities(text, ner_pipeline=None):
try:
# Use the provided pipeline or default to the model dictionary
if ner_pipeline is None:
ner_pipeline = models['ner_pipeline']
# Perform NER using the pipeline
ner_results = ner_pipeline(text)
# Extract unique entities that start with "B-"
entities = {result['word'] for result in ner_results if result['entity'].startswith("B-")}
return list(entities)
except Exception as e:
print(f"Error extracting entities: {e}")
return []
def match_entities(query_entities, sentence_entities):
try:
query_set, sentence_set = set(query_entities), set(sentence_entities)
matches = query_set.intersection(sentence_set)
return len(matches)
except Exception as e:
print(f"Error matching entities: {e}")
return 0
def extract_relevant_portions(document_texts, query, max_portions=3, portion_size=1, min_query_words=1):
relevant_portions = {}
# Extract entities from the query
query_entities = extract_entities(query)
print(f"Extracted Query Entities: {query_entities}")
for doc_id, doc_text in enumerate(document_texts):
sentences = nltk.sent_tokenize(doc_text) # Split document into sentences
doc_relevant_portions = []
# Extract entities from the entire document
#ner_biobert = models['ner_pipeline']
doc_entities = extract_entities(doc_text)
print(f"Document {doc_id} Entities: {doc_entities}")
for i, sentence in enumerate(sentences):
# Extract entities from the sentence
sentence_entities = extract_entities(sentence)
# Compute relevance score
relevance_score = match_entities(query_entities, sentence_entities)
# Select sentences with at least `min_query_words` matching entities
if relevance_score >= min_query_words:
start_idx = max(0, i - portion_size // 2)
end_idx = min(len(sentences), i + portion_size // 2 + 1)
portion = " ".join(sentences[start_idx:end_idx])
doc_relevant_portions.append(portion)
if len(doc_relevant_portions) >= max_portions:
break
# Fallback: Include most entity-dense sentences if no relevant portions were found
if not doc_relevant_portions and len(doc_entities) > 0:
print(f"Fallback: Selecting sentences with most entities for Document {doc_id}")
sorted_sentences = sorted(sentences, key=lambda s: len(extract_entities(s, ner_biobert)), reverse=True)
for fallback_sentence in sorted_sentences[:max_portions]:
doc_relevant_portions.append(fallback_sentence)
# Add the extracted portions to the result dictionary
relevant_portions[f"Document_{doc_id}"] = doc_relevant_portions
return relevant_portions
def remove_duplicates(selected_parts):
unique_sentences = set()
unique_selected_parts = []
for sentence in selected_parts:
if sentence not in unique_sentences:
unique_selected_parts.append(sentence)
unique_sentences.add(sentence)
return unique_selected_parts
def extract_entities(text):
try:
biobert_tokenizer = models['bio_tokenizer']
biobert_model = models['bio_model']
inputs = biobert_tokenizer(text, return_tensors="pt")
outputs = biobert_model(**inputs)
predictions = torch.argmax(outputs.logits, dim=2)
tokens = biobert_tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
entities = [
tokens[i]
for i in range(len(tokens))
if predictions[0][i].item() != 0 # Assuming 0 is the label for non-entity
]
return entities
except Exception as e:
print(f"Error extracting entities: {e}")
return []
def enhance_passage_with_entities(passage, entities):
return f"{passage}\n\nEntities: {', '.join(entities)}"
def create_prompt(question, passage):
prompt = ("""
As a medical expert, you are required to answer the following question based only on the provided passage. Do not include any information not present in the passage. Your response should directly reflect the content of the passage. Maintain accuracy and relevance to the provided information.
Passage: {passage}
Question: {question}
Answer:
""")
return prompt.format(passage=passage, question=question)
def generate_answer(prompt, max_length=860, temperature=0.2):
tokenizer_f = models['llm_tokenizer']
model_f = models['llm_model']
inputs = tokenizer_f(prompt, return_tensors="pt", truncation=True)
# Start timing
#start_time = time.time()
# Generate the output
output_ids = model_f.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
temperature=temperature,
pad_token_id=tokenizer_f.eos_token_id
)
# End timing
#end_time = time.time()
# Calculate the duration
#duration = end_time - start_time
# Decode the answer
answer = tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
# Extract keywords from the passage and answer
passage_keywords = set(prompt.lower().split()) # Adjusted to check keywords in the full prompt
answer_keywords = set(answer.lower().split())
# Verify if the answer aligns with the passage
if passage_keywords.intersection(answer_keywords):
return answer #, duration
else:
return "Sorry, I can't help with that." #, duration
def remove_answer_prefix(text):
prefix = "Answer:"
if prefix in text:
return text.split(prefix, 1)[-1].strip() # Split only once to avoid splitting at other occurrences of "Answer:"
return text
def remove_incomplete_sentence(text):
# Check if the text ends with a period
if not text.endswith('.'):
# Find the last period or the end of the string
last_period_index = text.rfind('.')
if last_period_index != -1:
# Remove everything after the last period
return text[:last_period_index + 1].strip()
return text
@app.get("/")
async def root():
return {"message": "Welcome to the FastAPI application! Use the /health endpoint to check health, and /api/query for processing queries."}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
status = {
'status': 'healthy',
'models_loaded': bool(models),
'embeddings_loaded': bool(data.get('embeddings')),
'documents_loaded': not data.get('df', pd.DataFrame()).empty
}
return status
@app.post("/api/chat")
async def chat_endpoint(chat_query: ChatQuery):
try:
query_text = chat_query.query
language_code = chat_query.language_code
query_embedding = embed_query_text(query_text) # Embed the query text
embeddings_data = load_embeddings ()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5)
document_ids = [doc_id for doc_id, _ in initial_results]
document_texts = retrieve_document_texts(document_ids, folder_path)
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scored_documents = list(zip(scores, document_ids, document_texts))
scored_documents.sort(key=lambda x: x[0], reverse=True)
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
flattened_relevant_portions = []
for doc_id, portions in relevant_portions.items():
flattened_relevant_portions.extend(portions)
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
combined_parts = " ".join(unique_selected_parts)
context = [query_text] + unique_selected_parts
entities = extract_entities(query_text)
passage = enhance_passage_with_entities(combined_parts, entities)
prompt = create_prompt(query_text, passage)
answer = generate_answer(prompt)
answer_part = answer.split("Answer:")[-1].strip()
cleaned_answer = remove_answer_prefix(answer_part)
final_answer = remove_incomplete_sentence(cleaned_answer)
if language_code == 0:
final_answer = translate_en_to_ar(final_answer)
if final_answer:
print("Answer:")
print(final_answer)
else:
print("Sorry, I can't help with that.")
return {
"response": final_answer,
"conversation_id": chat_query.conversation_id,
"success": True
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/resources")
async def resources_endpoint(profile: MedicalProfile):
try:
# Build the query text
query_text = profile.conditions + " " + profile.daily_symptoms
print(f"Generated query text: {query_text}")
# Generate the query embedding
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
# Load embeddings and retrieve initial results
embeddings_data = load_embeddings()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=6)
if not initial_results:
raise ValueError("No relevant documents found.")
# Extract document IDs
document_ids = [doc_id for doc_id, _ in initial_results]
# Load document metadata (URL mappings)
file_path = 'finalcleaned_excel_file.xlsx'
df = pd.read_excel(file_path)
file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
# Map file names to original URLs
resources = []
for file_name in document_ids:
original_url = file_name_to_url.get(file_name, None)
if original_url:
title = get_page_title(original_url) or "Unknown Title"
resources.append({"file_name": file_name, "title": title, "url": original_url})
else:
resources.append({"file_name": file_name, "title": "Unknown", "url": None})
# Retrieve document texts
document_texts = retrieve_document_texts(document_ids, folder_path)
if not document_texts:
raise ValueError("Failed to retrieve document texts.")
# Perform re-ranking
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scores = [float(score) for score in scores] # Convert to native Python float
# Combine scores with resources
for i, resource in enumerate(resources):
resource["score"] = scores[i] if i < len(scores) else 0.0
# Sort resources by score
resources.sort(key=lambda x: x["score"], reverse=True)
# Limit response to top 5 resources
return {"resources": resources[:5], "success": True}
except ValueError as ve:
# Handle expected errors
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
# Handle unexpected errors
print(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.post("/api/recipes")
async def recipes_endpoint(profile: MedicalProfile):
try:
# Build the query text for recipes
recipe_query = (
f"Recipes foods and meals suitable for someone with: "
f"{profile.conditions} and experiencing {profile.daily_symptoms}"
)
query_text = recipe_query
print(f"Generated query text: {query_text}")
# Generate the query embedding
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
# Load embeddings and retrieve initial results
embeddings_data = load_recipes_embeddings()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results=5)
if not initial_results:
raise ValueError("No relevant recipes found.")
print("Initial results (document indices and similarities):")
print(initial_results)
# Extract document indices from the results
document_indices = [doc_id for doc_id, _ in initial_results]
print("Document indices:", document_indices)
# Retrieve document texts using the indices
document_texts = retrieve_rec_texts(document_indices, folder_path)
if not document_texts:
raise ValueError("Failed to retrieve document texts.")
print("Document texts retrieved:")
print(document_texts)
# Extract relevant portions from documents using the query text
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
print("Relevant portions extracted:")
print(relevant_portions)
flattened_relevant_portions = []
for doc_id, portions in relevant_portions.items():
flattened_relevant_portions.extend(portions)
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
print("Unique selected parts:")
print(unique_selected_parts)
combined_parts = " ".join(unique_selected_parts)
print("Combined text for context:")
print(combined_parts)
context = [query_text] + unique_selected_parts
print("Final context for answering:")
print(context)
# Extract entities from the query
entities = extract_entities(query_text)
print("Extracted entities:")
print(entities)
# Enhance the passage with the extracted entities
passage = enhance_passage_with_entities(combined_parts, entities)
print("Enhanced passage with entities:")
print(passage)
# Create the prompt for the model
prompt = create_prompt(query_text, passage)
print("Generated prompt:")
print(prompt)
# Generate the answer from the model
answer = generate_answer(prompt)
print("Generated answer:")
print(answer)
# Clean up the answer to extract the relevant part
answer_part = answer.split("Answer:")[-1].strip()
cleaned_answer = remove_answer_prefix(answer_part)
print("Cleaned answer:")
print(cleaned_answer)
final_answer = remove_incomplete_sentence(cleaned_answer)
print("Final answer:")
print(final_answer)
if language_code == 0:
final_answer = translate_en_to_ar(final_answer)
if final_answer:
print("Answer:")
print(final_answer)
else:
print("Sorry, I can't help with that.")
return {"response": final_answer}
except ValueError as ve:
# Handle expected errors
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
# Handle unexpected errors
print(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
if not init_success:
print("Warning: Application initialized with partial functionality")
# For running locally
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)