Spaces:
Sleeping
Sleeping
File size: 18,369 Bytes
eee7a65 35e1586 eee7a65 35e1586 eee7a65 35e1586 629c5b2 35e1586 eee7a65 35e1586 eee7a65 35e1586 7b16750 eee7a65 554b5f1 eee7a65 554b5f1 eee7a65 3b1c99a eee7a65 3b1c99a eee7a65 3b1c99a eee7a65 35e1586 eee7a65 35e1586 eee7a65 35e1586 eee7a65 35e1586 eee7a65 35e1586 eee7a65 35e1586 eee7a65 56b03dc eee7a65 56b03dc eee7a65 35e1586 eee7a65 35e1586 eee7a65 35e1586 eee7a65 35e1586 eee7a65 35e1586 eee7a65 35e1586 eee7a65 8e3b5f7 eee7a65 8e3b5f7 eee7a65 8e3b5f7 eee7a65 8e3b5f7 eee7a65 35e1586 eee7a65 2a5cca5 eee7a65 ba32265 eee7a65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import os
import pickle
import numpy as np
from flask import Flask, request, jsonify
from flask_cors import CORS
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForCausalLM,
AutoModelForTokenClassification
)
from sentence_transformers import SentenceTransformer, CrossEncoder
from sklearn.metrics.pairwise import cosine_similarity
from bs4 import BeautifulSoup
import nltk
import torch
import pandas as pd
from startup import setup_files
app = Flask(__name__)
CORS(app)
# Environment variables for file paths
EMBEDDINGS_PATH = os.environ.get('EMBEDDINGS_PATH', 'data/embeddings.pkl')
LINKS_PATH = os.environ.get('LINKS_PATH', 'data/finalcleaned_excel_file.xlsx')
def init_app():
# Download and extract files if they don't exist
if not os.path.exists('downloaded_articles'):
setup_files()
# Initialize models with proper error handling
def initialize_models():
try:
global embedding_model, cross_encoder, semantic_model
global ar_to_en_tokenizer, ar_to_en_model
global en_to_ar_tokenizer, en_to_ar_model
global tokenizer_f, model_f, bio_tokenizer, bio_model
print("Initializing models...")
# Basic embedding models
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
# Translation models
ar_to_en_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
ar_to_en_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
en_to_ar_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
en_to_ar_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
# Medical NER model
bio_tokenizer = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
bio_model = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
# LLM model
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
tokenizer_f = AutoTokenizer.from_pretrained(model_name)
model_f = AutoModelForCausalLM.from_pretrained(model_name)
nltk.download('punkt', quiet=True)
print("Models initialized successfully")
return True
except Exception as e:
print(f"Error initializing models: {e}")
return False
# Load data with error handling
def load_data():
try:
global embeddings_data, df
print("Loading data files...")
# Load embeddings
with open(EMBEDDINGS_PATH, 'rb') as file:
embeddings_data = pickle.load(file)
# Load links data
df = pd.read_excel(LINKS_PATH)
print("Data loaded successfully")
return True
except Exception as e:
print(f"Error loading data: {e}")
return False
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({'status': 'healthy'})
@app.route('/api/query', methods=['POST'])
def process_query():
try:
data = request.json
if not data or 'query' not in data:
return jsonify({'error': 'No query provided', 'success': False}), 400
query_text = data['query']
language_code = data.get('language_code', 0)
# Process query
if language_code == 0:
query_text = translate_ar_to_en(query_text)
# Get embeddings and find relevant documents
query_embedding = embedding_model.encode([query_text])
initial_results = query_embeddings(query_embedding, embeddings_data)
# Process documents
document_texts = retrieve_document_texts([doc_id for doc_id, _ in initial_results])
relevant_portions = extract_relevant_portions(document_texts, query_text)
# Generate answer
combined_text = " ".join([item for sublist in relevant_portions.values() for item in sublist])
answer = generate_answer(query_text, combined_text)
if language_code == 0:
answer = translate_en_to_ar(answer)
return jsonify({
'answer': answer,
'success': True
})
except Exception as e:
return jsonify({
'error': str(e),
'success': False
}), 500
def translate_ar_to_en(text):
try:
inputs = ar_to_en_tokenizer(text, return_tensors="pt", truncation=True)
outputs = ar_to_en_model.generate(**inputs)
return ar_to_en_tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"Translation error (AR->EN): {e}")
return text
def translate_en_to_ar(text):
try:
inputs = en_to_ar_tokenizer(text, return_tensors="pt", truncation=True)
outputs = en_to_ar_model.generate(**inputs)
return en_to_ar_tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"Translation error (EN->AR): {e}")
return text
language_code = 0
query_text = 'How can a patient with chronic kidney disease manage their daily activities and maintain quality of life?' #'symptoms of a heart attack '
def process_query(query_text):
if language_code == 0:
# Translate Arabic input to English
query_text = translate_ar_to_en(query_text)
return query_text
def embed_query_text(query_text):
query_embedding = embedding_model.encode([query_text])
return query_embedding
def query_embeddings(query_embedding, embeddings_data, n_results=5):
doc_ids = list(embeddings_data.keys())
doc_embeddings = np.array(list(embeddings_data.values()))
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
top_docs = [(doc_ids[i], similarities[i]) for i in top_indices]
return top_docs
query_embedding = embed_query_text(query_text) # Embed the query text
initial_results = query_embeddings(query_embedding, embeddings_data, n_results=5)
document_ids = [doc_id for doc_id, _ in initial_results]
print(document_ids)
import pandas as pd
import requests
from bs4 import BeautifulSoup
# Load the Excel file
file_path = '/kaggle/input/final-links/finalcleaned_excel_file.xlsx'
df = pd.read_excel(file_path)
# Create a dictionary mapping file names to URLs
# Assuming the DataFrame index corresponds to file names
file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
def get_page_title(url):
try:
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.find('title')
return title.get_text() if title else "No title found"
else:
return None
except requests.exceptions.RequestException:
return None
# Example file names
file_names = document_ids
# Retrieve original URLs
for file_name in file_names:
original_url = file_name_to_url.get(file_name, None)
if original_url:
title = get_page_title(original_url)
if title:
print(f"Title: {title},URL: {original_url}")
else:
print(f"Name: {file_name}")
else:
print(f"Name: {file_name}")
def retrieve_document_texts(doc_ids, folder_path):
texts = []
for doc_id in doc_ids:
file_path = os.path.join(folder_path, doc_id)
try:
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
text = soup.get_text(separator=' ', strip=True)
texts.append(text)
except FileNotFoundError:
texts.append("")
return texts
document_ids = [doc_id for doc_id, _ in initial_results]
document_texts = retrieve_document_texts(document_ids, folder_path)
# Rerank the results using the CrossEncoder
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scored_documents = list(zip(scores, document_ids, document_texts))
scored_documents.sort(key=lambda x: x[0], reverse=True)
print("Reranked results:")
for idx, (score, doc_id, doc) in enumerate(scored_documents):
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id}")
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import nltk
# Load BioBERT model and tokenizer for NER
bio_tokenizer = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
bio_model = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
ner_biobert = pipeline("ner", model=bio_model, tokenizer=bio_tokenizer)
def extract_entities(text, ner_pipeline):
"""
Extract entities using a NER pipeline.
Args:
text (str): The text from which to extract entities.
ner_pipeline (pipeline): The NER pipeline for entity extraction.
Returns:
List[str]: A list of unique extracted entities.
"""
ner_results = ner_pipeline(text)
entities = {result['word'] for result in ner_results if result['entity'].startswith("B-")}
return list(entities)
def match_entities(query_entities, sentence_entities):
"""
Compute the relevance score based on entity matching.
Args:
query_entities (List[str]): Entities extracted from the query.
sentence_entities (List[str]): Entities extracted from the sentence.
Returns:
float: The relevance score based on entity overlap.
"""
query_set, sentence_set = set(query_entities), set(sentence_entities)
matches = query_set.intersection(sentence_set)
return len(matches)
def extract_relevant_portions(document_texts, query, max_portions=3, portion_size=1, min_query_words=1):
"""
Extract relevant text portions from documents based on entity matching.
Args:
document_texts (List[str]): List of document texts.
query (str): The query text.
max_portions (int): Maximum number of relevant portions to extract per document.
portion_size (int): Number of sentences to include in each portion.
min_query_words (int): Minimum number of matching entities to consider a sentence relevant.
Returns:
Dict[str, List[str]]: Relevant portions for each document.
"""
relevant_portions = {}
# Extract entities from the query
query_entities = extract_entities(query, ner_biobert)
print(f"Extracted Query Entities: {query_entities}")
for doc_id, doc_text in enumerate(document_texts):
sentences = nltk.sent_tokenize(doc_text) # Split document into sentences
doc_relevant_portions = []
# Extract entities from the entire document
doc_entities = extract_entities(doc_text, ner_biobert)
print(f"Document {doc_id} Entities: {doc_entities}")
for i, sentence in enumerate(sentences):
# Extract entities from the sentence
sentence_entities = extract_entities(sentence, ner_biobert)
# Compute relevance score
relevance_score = match_entities(query_entities, sentence_entities)
# Select sentences with at least `min_query_words` matching entities
if relevance_score >= min_query_words:
start_idx = max(0, i - portion_size // 2)
end_idx = min(len(sentences), i + portion_size // 2 + 1)
portion = " ".join(sentences[start_idx:end_idx])
doc_relevant_portions.append(portion)
if len(doc_relevant_portions) >= max_portions:
break
# Add fallback to include the most entity-dense sentences if no results
if not doc_relevant_portions and len(doc_entities) > 0:
print(f"Fallback: Selecting sentences with most entities for Document {doc_id}")
sorted_sentences = sorted(sentences, key=lambda s: len(extract_entities(s, ner_biobert)), reverse=True)
for fallback_sentence in sorted_sentences[:max_portions]:
doc_relevant_portions.append(fallback_sentence)
relevant_portions[f"Document_{doc_id}"] = doc_relevant_portions
return relevant_portions
# Extract relevant portions based on query and documents
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=1)
for doc_id, portions in relevant_portions.items():
print(f"{doc_id}: {portions}")
# Remove duplicates from the selected portions
def remove_duplicates(selected_parts):
unique_sentences = set()
unique_selected_parts = []
for sentence in selected_parts:
if sentence not in unique_sentences:
unique_selected_parts.append(sentence)
unique_sentences.add(sentence)
return unique_selected_parts
# Flatten the dictionary of relevant portions (from earlier code)
flattened_relevant_portions = []
for doc_id, portions in relevant_portions.items():
flattened_relevant_portions.extend(portions)
# Remove duplicate portions
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
# Combine the unique parts into a single string of context
combined_parts = " ".join(unique_selected_parts)
# Construct context as a list: first the query, then the unique selected portions
context = [query_text] + unique_selected_parts
# Print the context (query + relevant portions)
print(context)
import pickle
with open('/kaggle/input/art-embeddings-pkl/embeddings.pkl', 'rb') as file:
data = pickle.load(file)
# Print the type of data
print(f"Data type: {type(data)}")
# Print the first few keys and values from the dictionary
print("First few keys and values:")
for i, (key, value) in enumerate(data.items()):
if i >= 5: # Limit to printing the first 5 key-value pairs
break
print(f"Key: {key}, Value: {value}")
import pickle
import pickletools
# Load the pickle file
file_path = '/kaggle/input/art-embeddings-pkl/embeddings.pkl'
with open(file_path, 'rb') as f:
# Read the pickle file
data = pickle.load(f)
# Check for suspicious or corrupted entries
def inspect_pickle(data):
for key, value in data.items():
if isinstance(value, (str, bytes)):
# Try to decode and catch any non-ASCII issues
try:
value.decode('ascii')
except UnicodeDecodeError as e:
print(f"Non-ASCII entry found in key: {key}")
print(f"Corrupted data: {value} ({e})")
continue
if isinstance(value, list) and any(isinstance(v, (list, dict, str, bytes)) for v in value):
# Inspect list elements recursively
inspect_pickle({f"{key}[{idx}]": v for idx, v in enumerate(value)})
# Inspect the data
inspect_pickle(data)
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch
import time
# Load Biobert model and tokenizer
biobert_tokenizer = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
biobert_model = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
def extract_entities(text):
inputs = biobert_tokenizer(text, return_tensors="pt")
outputs = biobert_model(**inputs)
predictions = torch.argmax(outputs.logits, dim=2)
tokens = biobert_tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
entities = [tokens[i] for i in range(len(tokens)) if predictions[0][i].item() != 0] # Assume 0 is the label for non-entity
return entities
def enhance_passage_with_entities(passage, entities):
# Example: Add entities to the passage for better context
return f"{passage}\n\nEntities: {', '.join(entities)}"
def create_prompt(question, passage):
prompt = ("""
As a medical expert, you are required to answer the following question based only on the provided passage. Do not include any information not present in the passage. Your response should directly reflect the content of the passage. Maintain accuracy and relevance to the provided information.
Passage: {passage}
Question: {question}
Answer:
""")
return prompt.format(passage=passage, question=question)
def generate_answer(prompt, max_length=860, temperature=0.2):
inputs = tokenizer_f(prompt, return_tensors="pt", truncation=True)
# Start timing
start_time = time.time()
output_ids = model_f.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
temperature=temperature,
pad_token_id=tokenizer_f.eos_token_id
)
# End timing
end_time = time.time()
# Calculate the duration
duration = end_time - start_time
# Decode the answer
answer = tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
passage_keywords = set(passage.lower().split())
answer_keywords = set(answer.lower().split())
if passage_keywords.intersection(answer_keywords):
return answer, duration
else:
return "Sorry, I can't help with that.", duration
# Integrate Biobert model
entities = extract_entities(query_text)
passage = enhance_passage_with_entities(combined_parts, entities)
# Generate answer with the enhanced passage
prompt = create_prompt(query_text, passage)
answer, generation_time = generate_answer(prompt)
print(f"\nTime taken to generate the answer: {generation_time:.2f} seconds")
def remove_answer_prefix(text):
prefix = "Answer:"
if prefix in text:
return text.split(prefix)[-1].strip()
return text
def remove_incomplete_sentence(text):
# Check if the text ends with a period
if not text.endswith('.'):
# Find the last period or the end of the string
last_period_index = text.rfind('.')
if last_period_index != -1:
# Remove everything after the last period
return text[:last_period_index + 1].strip()
return text
# Clean and print the answer
answer_part = answer.split("Answer:")[-1].strip()
cleaned_answer = remove_answer_prefix(answer_part)
final_answer = remove_incomplete_sentence(cleaned_answer)
if language_code == 0:
final_answer = translate_en_to_ar(final_answer)
if final_answer:
print("Answer:")
print(final_answer)
else:
print("Sorry, I can't help with that.") |