File size: 13,078 Bytes
eee7a65
35e1586
 
95a7e5a
 
 
35e1586
 
eee7a65
31bad44
35e1586
31bad44
35e1586
eee7a65
 
 
 
 
35e1586
7b16750
95a7e5a
 
 
 
 
 
 
 
 
 
 
554b5f1
31bad44
 
 
554b5f1
95a7e5a
 
 
 
31bad44
 
eee7a65
31bad44
 
 
 
 
3b1c99a
31bad44
 
 
 
 
f377404
 
 
 
31bad44
 
 
eee7a65
 
31bad44
 
 
 
 
 
 
 
 
 
eee7a65
 
31bad44
 
eee7a65
31bad44
eee7a65
3b1c99a
31bad44
eee7a65
 
f377404
6398daa
35e1586
f377404
 
eee7a65
f377404
 
 
6398daa
 
 
f377404
 
6398daa
 
 
f377404
 
 
 
6398daa
f377404
 
6398daa
 
f377404
6398daa
f377404
 
6398daa
 
f377404
6398daa
 
 
 
 
 
 
 
 
 
eee7a65
6398daa
f377404
 
6398daa
f377404
 
 
6398daa
 
 
 
 
f377404
 
6398daa
f377404
 
 
 
 
 
 
 
 
 
eee7a65
f377404
 
 
 
 
 
eee7a65
 
f377404
 
eee7a65
35e1586
f377404
 
 
 
 
 
 
 
 
 
 
 
31bad44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f377404
31bad44
 
 
 
 
 
 
 
 
 
 
f377404
31bad44
 
 
f377404
31bad44
f377404
 
31bad44
f377404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31bad44
 
f377404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31bad44
95a7e5a
 
31bad44
f377404
 
 
 
 
 
95a7e5a
35e1586
95a7e5a
 
31bad44
eee7a65
95a7e5a
 
35e1586
f377404
95a7e5a
 
 
 
35e1586
f377404
 
 
35e1586
f377404
 
 
 
95a7e5a
f377404
 
95a7e5a
f377404
 
 
 
 
95a7e5a
f377404
 
95a7e5a
f377404
 
 
 
 
 
 
 
 
 
95a7e5a
f377404
 
95a7e5a
f377404
 
 
95a7e5a
 
 
 
35e1586
eee7a65
f377404
95a7e5a
 
 
 
35e1586
95a7e5a
31bad44
 
eee7a65
31bad44
f377404
eee7a65
95a7e5a
31bad44
95a7e5a
aad2491
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import os
import pickle
import numpy as np
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import (
    AutoTokenizer, 
    AutoModelForSeq2SeqLM, 
    AutoModelForTokenClassification,
    AutoModelForCausalLM,
    pipeline
)
from sentence_transformers import SentenceTransformer, CrossEncoder
from sklearn.metrics.pairwise import cosine_similarity
from bs4 import BeautifulSoup
import nltk
import torch
import pandas as pd

# Initialize FastAPI app
app = FastAPI()

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Global variables for models and data
models = {}
data = {}

class QueryRequest(BaseModel):
    query: str
    language_code: int = 0

def init_nltk():
    """Initialize NLTK resources"""
    try:
        nltk.download('punkt', quiet=True)
        return True
    except Exception as e:
        print(f"Error initializing NLTK: {e}")
        return False

def load_models():
    """Initialize all required models"""
    try:
        print("Loading models...")
        
        # Set device
        device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"Device set to use {device}")
        
        # Embedding models
        models['embedding'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
        models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
        
        # Translation models
        models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
        models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
        models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
        models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
        
        # NER model
        models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
        models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
        models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
        
        # LLM model
        model_name = "M4-ai/Orca-2.0-Tau-1.8B"
        models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
        models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
        
        print("Models loaded successfully")
        return True
    except Exception as e:
        print(f"Error loading models: {e}")
        return False

def load_embeddings():
    """Load embeddings with robust error handling for numpy arrays"""
    try:
        print("Loading embeddings...")
        embeddings_path = 'embeddings.pkl'
        
        if not os.path.exists(embeddings_path):
            print(f"Error: {embeddings_path} not found")
            return False

        def persistent_load(pid):
            return pid
            
        class CustomUnpickler(pickle.Unpickler):
            def persistent_load(self, pid):
                return pid
                
            def find_class(self, module, name):
                if module == "__main__":
                    module = "numpy"
                return super().find_class(module, name)
        
        with open(embeddings_path, 'rb') as f:
            try:
                # Try loading with numpy first
                data['embeddings'] = np.load(f, allow_pickle=True).item()
            except Exception as e:
                print(f"Numpy loading failed, trying pickle: {e}")
                f.seek(0)
                try:
                    # Try standard pickle
                    data['embeddings'] = pickle.load(f)
                except Exception as e:
                    print(f"Standard pickle failed, trying custom unpickler: {e}")
                    f.seek(0)
                    try:
                        # Try custom unpickler with persistent load handler
                        unpickler = CustomUnpickler(f)
                        data['embeddings'] = unpickler.load()
                    except Exception as e:
                        print(f"Custom unpickler failed: {e}")
                        data['embeddings'] = {}
                        return False
        
        # Verify the loaded data
        if not isinstance(data['embeddings'], dict):
            print("Error: Embeddings data is not in expected format")
            print(f"Actual type: {type(data['embeddings'])}")
            data['embeddings'] = {}
            return False
            
        # Verify the structure of the embeddings
        sample_key = next(iter(data['embeddings']))
        sample_value = data['embeddings'][sample_key]
        print(f"Sample embedding structure - Key: {sample_key}, Value type: {type(sample_value)}, Shape: {np.array(sample_value).shape}")
        
        print(f"Successfully loaded {len(data['embeddings'])} embeddings")
        return True
        
    except Exception as e:
        print(f"Error loading embeddings: {e}")
        data['embeddings'] = {}
        return False

def load_documents_data():
    """Load document data with error handling"""
    try:
        print("Loading documents data...")
        docs_path = 'finalcleaned_excel_file.xlsx'
        
        if not os.path.exists(docs_path):
            print(f"Error: {docs_path} not found")
            return False
            
        data['df'] = pd.read_excel(docs_path)
        print(f"Successfully loaded {len(data['df'])} document records")
        return True
    except Exception as e:
        print(f"Error loading documents data: {e}")
        data['df'] = pd.DataFrame()
        return False

def load_data():
    """Load all required data"""
    embeddings_success = load_embeddings()
    documents_success = load_documents_data()
    
    if not embeddings_success:
        print("Warning: Failed to load embeddings, falling back to basic functionality")
    if not documents_success:
        print("Warning: Failed to load documents data, falling back to basic functionality")
        
    return True

def translate_text(text, source_to_target='ar_to_en'):
    """Translate text between Arabic and English"""
    try:
        if source_to_target == 'ar_to_en':
            tokenizer = models['ar_to_en_tokenizer']
            model = models['ar_to_en_model']
        else:
            tokenizer = models['en_to_ar_tokenizer']
            model = models['en_to_ar_model']
            
        inputs = tokenizer(text, return_tensors="pt", truncation=True)
        outputs = model.generate(**inputs)
        return tokenizer.decode(outputs[0], skip_special_tokens=True)
    except Exception as e:
        print(f"Translation error: {e}")
        return text

def extract_entities(text):
    """Extract medical entities from text using NER"""
    try:
        results = models['ner_pipeline'](text)
        return list({result['word'] for result in results if result['entity'].startswith("B-")})
    except Exception as e:
        print(f"Error extracting entities: {e}")
        return []

def generate_answer(query, context, max_length=860, temperature=0.2):
    """Generate answer using LLM"""
    try:
        prompt = f"""
        As a medical expert, please provide a clear and accurate answer to the following question based solely on the provided context.
        
        Context: {context}
        
        Question: {query}
        
        Answer: Let me help you with accurate information from reliable medical sources."""

        inputs = models['llm_tokenizer'](prompt, return_tensors="pt", truncation=True)
        
        with torch.no_grad():
            outputs = models['llm_model'].generate(
                inputs.input_ids,
                max_length=max_length,
                num_return_sequences=1,
                temperature=temperature,
                do_sample=True,
                top_p=0.9,
                pad_token_id=models['llm_tokenizer'].eos_token_id
            )
        
        response = models['llm_tokenizer'].decode(outputs[0], skip_special_tokens=True)
        
        if "Answer:" in response:
            response = response.split("Answer:")[-1].strip()
        
        sentences = nltk.sent_tokenize(response)
        if sentences:
            return " ".join(sentences)
        return response

    except Exception as e:
        print(f"Error generating answer: {e}")
        return "I apologize, but I'm unable to generate an answer at this time. Please try again later."

def query_embeddings(query_embedding, n_results=5):
    """Find relevant documents using embedding similarity"""
    if not data['embeddings']:
        return []
        
    try:
        doc_ids = list(data['embeddings'].keys())
        doc_embeddings = np.array(list(data['embeddings'].values()))
        similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
        top_indices = similarities.argsort()[-n_results:][::-1]
        return [(doc_ids[i], similarities[i]) for i in top_indices]
    except Exception as e:
        print(f"Error in query_embeddings: {e}")
        return []

def retrieve_document_text(doc_id):
    """Retrieve document text from HTML file"""
    try:
        file_path = os.path.join('downloaded_articles', doc_id)
        if not os.path.exists(file_path):
            print(f"Warning: Document file not found: {file_path}")
            return ""
            
        with open(file_path, 'r', encoding='utf-8') as file:
            soup = BeautifulSoup(file, 'html.parser')
            return soup.get_text(separator=' ', strip=True)
    except Exception as e:
        print(f"Error retrieving document {doc_id}: {e}")
        return ""

def rerank_documents(query, doc_texts):
    """Rerank documents using cross-encoder"""
    try:
        pairs = [(query, doc) for doc in doc_texts]
        scores = models['cross_encoder'].predict(pairs)
        return scores
    except Exception as e:
        print(f"Error reranking documents: {e}")
        return np.zeros(len(doc_texts))

@app.get("/health")
async def health_check():
    """Health check endpoint"""
    status = {
        'status': 'healthy',
        'models_loaded': bool(models),
        'embeddings_loaded': bool(data.get('embeddings')),
        'documents_loaded': not data.get('df', pd.DataFrame()).empty
    }
    return status

@app.post("/api/query")
async def process_query(request: QueryRequest):
    """Main query processing endpoint"""
    try:
        query_text = request.query
        language_code = request.language_code

        if not models or not data.get('embeddings'):
            raise HTTPException(
                status_code=503,
                detail="The system is currently initializing. Please try again in a few minutes."
            )

        try:
            if language_code == 0:
                query_text = translate_text(query_text, 'ar_to_en')

            query_embedding = models['embedding'].encode([query_text])
            relevant_docs = query_embeddings(query_embedding)
            
            if not relevant_docs:
                return {
                    'answer': 'No relevant information found. Please try a different query.',
                    'success': True
                }

            doc_texts = [retrieve_document_text(doc_id) for doc_id, _ in relevant_docs]
            doc_texts = [text for text in doc_texts if text.strip()]
            
            if not doc_texts:
                return {
                    'answer': 'Unable to retrieve relevant documents. Please try again.',
                    'success': True
                }

            rerank_scores = rerank_documents(query_text, doc_texts)
            ranked_texts = [text for _, text in sorted(zip(rerank_scores, doc_texts), reverse=True)]
            
            context = " ".join(ranked_texts[:3])
            answer = generate_answer(query_text, context)
            
            if language_code == 0:
                answer = translate_text(answer, 'en_to_ar')

            return {
                'answer': answer,
                'success': True
            }

        except Exception as e:
            print(f"Error processing query: {e}")
            raise HTTPException(
                status_code=500,
                detail="An error occurred while processing your query"
            )

    except Exception as e:
        print(f"Error in process_query: {e}")
        raise HTTPException(
            status_code=500,
            detail=str(e)
        )

# Initialize application
print("Initializing application...")
init_success = init_nltk() and load_models() and load_data()

if not init_success:
    print("Warning: Application initialized with partial functionality")

# For running locally
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)