File size: 9,931 Bytes
35e1586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Optional, Dict
import pickle
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from bs4 import BeautifulSoup
import os
import nltk
import torch
from transformers import (
    AutoTokenizer, 
    BartForConditionalGeneration,
    AutoModelForCausalLM,
    AutoModelForSeq2SeqLM
)
import pandas as pd
import time

app = FastAPI()

# Models and data structures to store loaded models
class GlobalModels:
    embedding_model = None
    cross_encoder = None
    semantic_model = None
    tokenizer = None
    model = None
    tokenizer_f = None
    model_f = None
    ar_to_en_tokenizer = None
    ar_to_en_model = None
    en_to_ar_tokenizer = None
    en_to_ar_model = None
    embeddings_data = None
    file_name_to_url = None
    bio_tokenizer = None
    bio_model = None

global_models = GlobalModels()

# Download NLTK data
nltk.download('punkt')

# Pydantic models for request validation
class QueryInput(BaseModel):
    query_text: str
    language_code: int  # 0 for Arabic, 1 for English
    query_type: str    # "profile" or "question"
    previous_qa: Optional[List[Dict[str, str]]] = None

class DocumentResponse(BaseModel):
    title: str
    url: str
    text: str
    score: float

@app.on_event("startup")
async def load_models():
    """Initialize all models and data on startup"""
    try:
        # Load embedding models
        global_models.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
        global_models.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
        global_models.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')

        # Load BART models
        global_models.tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
        global_models.model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")

        # Load Orca model
        model_name = "M4-ai/Orca-2.0-Tau-1.8B"
        global_models.tokenizer_f = AutoTokenizer.from_pretrained(model_name)
        global_models.model_f = AutoModelForCausalLM.from_pretrained(model_name)

        # Load translation models
        global_models.ar_to_en_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
        global_models.ar_to_en_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
        global_models.en_to_ar_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
        global_models.en_to_ar_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")

        # Load Medical NER models
        global_models.bio_tokenizer = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
        global_models.bio_model = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")

        # Load embeddings data
        with open('embeddings.pkl', 'rb') as file:
            global_models.embeddings_data = pickle.load(file)

        # Load URL mapping data
        df = pd.read_excel('finalcleaned_excel_file.xlsx')
        global_models.file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}

    except Exception as e:
        print(f"Error loading models: {e}")
        raise

def translate_ar_to_en(text):
    try:
        inputs = global_models.ar_to_en_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        translated_ids = global_models.ar_to_en_model.generate(
            inputs.input_ids,
            max_length=512,
            num_beams=4,
            early_stopping=True
        )
        translated_text = global_models.ar_to_en_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
        return translated_text
    except Exception as e:
        print(f"Error during Arabic to English translation: {e}")
        return None

def translate_en_to_ar(text):
    try:
        inputs = global_models.en_to_ar_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        translated_ids = global_models.en_to_ar_model.generate(
            inputs.input_ids,
            max_length=512,
            num_beams=4,
            early_stopping=True
        )
        translated_text = global_models.en_to_ar_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
        return translated_text
    except Exception as e:
        print(f"Error during English to Arabic translation: {e}")
        return None

def process_query(query_text, language_code):
    if language_code == 0:
        return translate_ar_to_en(query_text)
    return query_text

def embed_query_text(query_text):
    return global_models.embedding_model.encode([query_text])

def query_embeddings(query_embedding, n_results=5):
    doc_ids = list(global_models.embeddings_data.keys())
    doc_embeddings = np.array(list(global_models.embeddings_data.values()))
    similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
    top_indices = similarities.argsort()[-n_results:][::-1]
    return [(doc_ids[i], similarities[i]) for i in top_indices]

def retrieve_document_texts(doc_ids, folder_path='downloaded_articles'):
    texts = []
    for doc_id in doc_ids:
        file_path = os.path.join(folder_path, doc_id)
        try:
            with open(file_path, 'r', encoding='utf-8') as file:
                soup = BeautifulSoup(file, 'html.parser')
                text = soup.get_text(separator=' ', strip=True)
                texts.append(text)
        except FileNotFoundError:
            texts.append("")
    return texts

def extract_entities(text):
    inputs = global_models.bio_tokenizer(text, return_tensors="pt")
    outputs = global_models.bio_model(**inputs)
    predictions = torch.argmax(outputs.logits, dim=2)
    tokens = global_models.bio_tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
    return [tokens[i] for i in range(len(tokens)) if predictions[0][i].item() != 0]

def create_prompt(question, passage):
    return f"""
    As a medical expert, you are required to answer the following question based only on the provided passage. 
    Do not include any information not present in the passage. Your response should directly reflect the content 
    of the passage. Maintain accuracy and relevance to the provided information.

    Passage: {passage}

    Question: {question}

    Answer:
    """

def generate_answer(prompt, max_length=860, temperature=0.2):
    inputs = global_models.tokenizer_f(prompt, return_tensors="pt", truncation=True)
    
    start_time = time.time()
    output_ids = global_models.model_f.generate(
        inputs.input_ids,
        max_length=max_length,
        num_return_sequences=1,
        temperature=temperature,
        pad_token_id=global_models.tokenizer_f.eos_token_id
    )
    duration = time.time() - start_time
    
    answer = global_models.tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
    return answer, duration

def clean_answer(answer):
    answer_part = answer.split("Answer:")[-1].strip()
    if not answer_part.endswith('.'):
        last_period_index = answer_part.rfind('.')
        if last_period_index != -1:
            answer_part = answer_part[:last_period_index + 1].strip()
    return answer_part

@app.post("/retrieve_documents")
async def retrieve_documents(input_data: QueryInput):
    try:
        # Process query
        processed_query = process_query(input_data.query_text, input_data.language_code)
        query_embedding = embed_query_text(processed_query)
        results = query_embeddings(query_embedding)
        
        # Get document texts and rerank
        document_ids = [doc_id for doc_id, _ in results]
        document_texts = retrieve_document_texts(document_ids)
        scores = global_models.cross_encoder.predict([(processed_query, doc) for doc in document_texts])
        
        # Prepare response
        documents = []
        for score, doc_id, text in zip(scores, document_ids, document_texts):
            url = global_models.file_name_to_url.get(doc_id, "")
            documents.append({
                "title": doc_id,
                "url": url,
                "text": text if input_data.language_code == 1 else translate_en_to_ar(text),
                "score": float(score)
            })
        
        return {"status": "success", "documents": documents}
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/get_answer")
async def get_answer(input_data: QueryInput):
    try:
        # Process query
        processed_query = process_query(input_data.query_text, input_data.language_code)
        
        # Get relevant documents
        query_embedding = embed_query_text(processed_query)
        results = query_embeddings(query_embedding)
        document_ids = [doc_id for doc_id, _ in results]
        document_texts = retrieve_document_texts(document_ids)
        
        # Extract entities and create context
        entities = extract_entities(processed_query)
        context = " ".join(document_texts)
        enhanced_context = f"{context}\n\nEntities: {', '.join(entities)}"
        
        # Generate answer
        prompt = create_prompt(processed_query, enhanced_context)
        answer, duration = generate_answer(prompt)
        final_answer = clean_answer(answer)
        
        # Translate if needed
        if input_data.language_code == 0:
            final_answer = translate_en_to_ar(final_answer)
        
        return {
            "status": "success",
            "answer": final_answer,
            "processing_time": duration
        }
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)