File size: 1,954 Bytes
abc16ec
 
3ee66e5
 
abc16ec
 
 
 
863cee5
abc16ec
 
 
 
3ee66e5
40cb81b
3ee66e5
abc16ec
9ad3866
8daf606
abc16ec
95be932
f97920f
 
 
3164630
f97920f
8daf606
f97920f
95be932
 
 
8daf606
e960d9b
 
 
95be932
 
e960d9b
 
 
95be932
e960d9b
 
 
 
 
 
 
 
 
 
 
 
95be932
abc16ec
 
 
 
3ee66e5
abc16ec
936abfc
e4e782c
abc16ec
3ee66e5
ecec617
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
from typing import Optional, Tuple
from threading import Lock
import pickle

import gradio as gr
from query_data import get_chain



class ChatWrapper:
    def __init__(self):
        self.lock = Lock()


    def __call__(self, inp: str, history: Optional[Tuple[str, str]]):
        self.lock.acquire()
        api_key = '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'
        #chain = self.set_openai_api_key(api_key)
        try:
          
            # with open("vectorstore.pkl", "rb") as f:
            #     vectorstore = pickle.load(f)
                
            os.environ["OPENAI_API_KEY"] = api_key   
            # qa_chain = get_chain(vectorstore)
            
            # print("Chat with your docs!")

            with open("vectorstore.pkl", "rb") as f:
                vectorstore = pickle.load(f)
            
            qa_chain = get_chain(vectorstore)
            chat_history = []
            print("Chat with your docs!")
            while True:
                print("Human:")
                question = inp
                output = qa_chain({"question": question, "chat_history": chat_history})
                chat_history.append((question, output["answer"]))
                print("AI:")
                print(result["answer"])


            
           # while True:
            #    print("Human:")
             #   history = history or []
              #  output = qa_chain({"question": inp, "chat_history": history})["answer"]
                #history.append((inp, output))
               # print("AI:")
                #print(output["answer"])
                chatResult = (output, chat_history)
            
        except Exception as e:
            raise e
        finally:
            self.lock.release()
        return chatResult

chat = ChatWrapper()
state = gr.State()

gradio_interface = gr.Interface(chat, inputs=["text", state], outputs=["text", state])
gradio_interface.launch(debug=True)