thealphamerc commited on
Commit
8181b4d
·
1 Parent(s): 63690e8

Fix python version

Browse files
Files changed (2) hide show
  1. requirements.txt +2 -2
  2. script.py +0 -87
requirements.txt CHANGED
@@ -1,2 +1,2 @@
1
- whisper;python_version=="3.9"
2
- gradio===3.27.0;python_version=="3.9"
 
1
+ whisper;python_version=="3.10"
2
+ gradio===3.27.0;python_version=="3.10"
script.py DELETED
@@ -1,87 +0,0 @@
1
- # Basic script for using the OpenAI Whisper model to transcribe a video file. You can uncomment whichever model you want to use.
2
- # Author: ThioJoe ( https://github.com/ThioJoe )
3
-
4
- # Required third party packages: whisper
5
- # See instructions for setup here: https://github.com/openai/whisper#setup
6
- # - You can use the below command to pull the repo and install dependencies, then just put this script in the repo directory:
7
- # pip install git+https://github.com/openai/whisper.git
8
-
9
- import whisper
10
- import io
11
- import time
12
- import os
13
- import json
14
- import pathlib
15
-
16
- # Choose model to use by uncommenting
17
- # modelName = "tiny.en"
18
- modelName = "base.en"
19
- # modelName = "small.en"
20
- # modelName = "medium.en"
21
- # modelName = "large-v2"
22
-
23
- # Other Variables
24
- # (bool) Whether to export the segment data to a json file. Will include word level timestamps if word_timestamps is True.
25
- exportTimestampData = True
26
- outputFolder = "Output"
27
-
28
- # ----- Select variables for transcribe method -----
29
- # audio: path to audio file
30
- verbose = True # (bool): Whether to display the text being decoded to the console. If True, displays all the details, If False, displays minimal details. If None, does not display anything
31
- language = "english" # Language of audio file
32
- # (bool): Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.
33
- word_timestamps = False
34
- # initial_prompt="" # (optional str): Optional text to provide as a prompt for the first window. This can be used to provide, or "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns to make it more likely to predict those word correctly.
35
-
36
- # -------------------------------------------------------------------------
37
- print(f"Using Model: {modelName}")
38
- filePath = input("Path to File Being Transcribed: ")
39
- filePath = filePath.strip("\"")
40
- if not os.path.exists(filePath):
41
- print("Problem Getting File...")
42
- input("Press Enter to Exit...")
43
- exit()
44
-
45
- # If output folder does not exist, create it
46
- if not os.path.exists(outputFolder):
47
- os.makedirs(outputFolder)
48
- print("Created Output Folder.\n")
49
-
50
- # Get filename stem using pathlib (filename without extension)
51
- fileNameStem = pathlib.Path(filePath).stem
52
-
53
- resultFileName = f"{fileNameStem}.txt"
54
- jsonFileName = f"{fileNameStem}.json"
55
-
56
- model = whisper.load_model(modelName)
57
- start = time.time()
58
-
59
- # ---------------------------------------------------
60
- result = model.transcribe(audio=filePath, language=language,
61
- word_timestamps=word_timestamps, verbose=verbose)
62
- # ---------------------------------------------------
63
-
64
- end = time.time()
65
- elapsed = float(end - start)
66
-
67
- # Save transcription text to file
68
- print("\nWriting transcription to file...")
69
- with open(os.path.join(outputFolder, resultFileName), "w", encoding="utf-8") as file:
70
- file.write(result["text"])
71
- print("Finished writing transcription file.")
72
-
73
- # Sav
74
- # e the segments data to json file
75
- # if word_timestamps == True:
76
- if exportTimestampData == True:
77
- print("\nWriting segment data to file...")
78
- with open(os.path.join(outputFolder, jsonFileName), "w", encoding="utf-8") as file:
79
- segmentsData = result["segments"]
80
- json.dump(segmentsData, file, indent=4)
81
- print("Finished writing segment data file.")
82
-
83
- elapsedMinutes = str(round(elapsed/60, 2))
84
- print(f"\nElapsed Time With {modelName} Model: {elapsedMinutes} Minutes")
85
-
86
- input("Press Enter to exit...")
87
- exit()