Spaces:
Runtime error
Runtime error
Commit
·
8181b4d
1
Parent(s):
63690e8
Fix python version
Browse files- requirements.txt +2 -2
- script.py +0 -87
requirements.txt
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
-
whisper;python_version=="3.
|
| 2 |
-
gradio===3.27.0;python_version=="3.
|
|
|
|
| 1 |
+
whisper;python_version=="3.10"
|
| 2 |
+
gradio===3.27.0;python_version=="3.10"
|
script.py
DELETED
|
@@ -1,87 +0,0 @@
|
|
| 1 |
-
# Basic script for using the OpenAI Whisper model to transcribe a video file. You can uncomment whichever model you want to use.
|
| 2 |
-
# Author: ThioJoe ( https://github.com/ThioJoe )
|
| 3 |
-
|
| 4 |
-
# Required third party packages: whisper
|
| 5 |
-
# See instructions for setup here: https://github.com/openai/whisper#setup
|
| 6 |
-
# - You can use the below command to pull the repo and install dependencies, then just put this script in the repo directory:
|
| 7 |
-
# pip install git+https://github.com/openai/whisper.git
|
| 8 |
-
|
| 9 |
-
import whisper
|
| 10 |
-
import io
|
| 11 |
-
import time
|
| 12 |
-
import os
|
| 13 |
-
import json
|
| 14 |
-
import pathlib
|
| 15 |
-
|
| 16 |
-
# Choose model to use by uncommenting
|
| 17 |
-
# modelName = "tiny.en"
|
| 18 |
-
modelName = "base.en"
|
| 19 |
-
# modelName = "small.en"
|
| 20 |
-
# modelName = "medium.en"
|
| 21 |
-
# modelName = "large-v2"
|
| 22 |
-
|
| 23 |
-
# Other Variables
|
| 24 |
-
# (bool) Whether to export the segment data to a json file. Will include word level timestamps if word_timestamps is True.
|
| 25 |
-
exportTimestampData = True
|
| 26 |
-
outputFolder = "Output"
|
| 27 |
-
|
| 28 |
-
# ----- Select variables for transcribe method -----
|
| 29 |
-
# audio: path to audio file
|
| 30 |
-
verbose = True # (bool): Whether to display the text being decoded to the console. If True, displays all the details, If False, displays minimal details. If None, does not display anything
|
| 31 |
-
language = "english" # Language of audio file
|
| 32 |
-
# (bool): Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.
|
| 33 |
-
word_timestamps = False
|
| 34 |
-
# initial_prompt="" # (optional str): Optional text to provide as a prompt for the first window. This can be used to provide, or "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns to make it more likely to predict those word correctly.
|
| 35 |
-
|
| 36 |
-
# -------------------------------------------------------------------------
|
| 37 |
-
print(f"Using Model: {modelName}")
|
| 38 |
-
filePath = input("Path to File Being Transcribed: ")
|
| 39 |
-
filePath = filePath.strip("\"")
|
| 40 |
-
if not os.path.exists(filePath):
|
| 41 |
-
print("Problem Getting File...")
|
| 42 |
-
input("Press Enter to Exit...")
|
| 43 |
-
exit()
|
| 44 |
-
|
| 45 |
-
# If output folder does not exist, create it
|
| 46 |
-
if not os.path.exists(outputFolder):
|
| 47 |
-
os.makedirs(outputFolder)
|
| 48 |
-
print("Created Output Folder.\n")
|
| 49 |
-
|
| 50 |
-
# Get filename stem using pathlib (filename without extension)
|
| 51 |
-
fileNameStem = pathlib.Path(filePath).stem
|
| 52 |
-
|
| 53 |
-
resultFileName = f"{fileNameStem}.txt"
|
| 54 |
-
jsonFileName = f"{fileNameStem}.json"
|
| 55 |
-
|
| 56 |
-
model = whisper.load_model(modelName)
|
| 57 |
-
start = time.time()
|
| 58 |
-
|
| 59 |
-
# ---------------------------------------------------
|
| 60 |
-
result = model.transcribe(audio=filePath, language=language,
|
| 61 |
-
word_timestamps=word_timestamps, verbose=verbose)
|
| 62 |
-
# ---------------------------------------------------
|
| 63 |
-
|
| 64 |
-
end = time.time()
|
| 65 |
-
elapsed = float(end - start)
|
| 66 |
-
|
| 67 |
-
# Save transcription text to file
|
| 68 |
-
print("\nWriting transcription to file...")
|
| 69 |
-
with open(os.path.join(outputFolder, resultFileName), "w", encoding="utf-8") as file:
|
| 70 |
-
file.write(result["text"])
|
| 71 |
-
print("Finished writing transcription file.")
|
| 72 |
-
|
| 73 |
-
# Sav
|
| 74 |
-
# e the segments data to json file
|
| 75 |
-
# if word_timestamps == True:
|
| 76 |
-
if exportTimestampData == True:
|
| 77 |
-
print("\nWriting segment data to file...")
|
| 78 |
-
with open(os.path.join(outputFolder, jsonFileName), "w", encoding="utf-8") as file:
|
| 79 |
-
segmentsData = result["segments"]
|
| 80 |
-
json.dump(segmentsData, file, indent=4)
|
| 81 |
-
print("Finished writing segment data file.")
|
| 82 |
-
|
| 83 |
-
elapsedMinutes = str(round(elapsed/60, 2))
|
| 84 |
-
print(f"\nElapsed Time With {modelName} Model: {elapsedMinutes} Minutes")
|
| 85 |
-
|
| 86 |
-
input("Press Enter to exit...")
|
| 87 |
-
exit()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|