File size: 3,091 Bytes
19befe8
5c66990
47d9326
9de2290
 
 
47d9326
7a97be1
47d9326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a97be1
 
47d9326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
os.system("pip install git+https://github.com/openai/whisper.git")
import gradio as gr
from subprocess import call
import whisper
import logging
# from transformers.pipelines.audio_utils import ffmpeg_read


logger = logging.getLogger("whisper-jax-app")
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter(
    "%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)


BATCH_SIZE = 16
CHUNK_LENGTH_S = 30
NUM_PROC = 8
FILE_LIMIT_MB = 1000
YT_ATTEMPT_LIMIT = 3


def run_cmd(command):
    try:
        print(command)
        call(command)
    except KeyboardInterrupt:
        print("Process interrupted")
        sys.exit(1)


def inference(text):
    cmd = ['tts', '--text', text]
    run_cmd(cmd)
    return 'tts_output.wav'


model = whisper.load_model("base")

inputs = gr.components.Audio(type="filepath", label="Add audio file")
outputs = gr.components.Textbox()
title = "Audio To text⚡️"
description = "An example of using TTS to generate speech from text."
article = ""
examples = [
    [""]
]


def transcribe(inputs):
    print('Inputs: ', inputs)
    # print('Text: ', text)
    # progress(0, desc="Loading audio file...")
    if inputs is None:
        logger.warning("No audio file")
        return "No audio file submitted! Please upload an audio file before submitting your request."
    file_size_mb = os.stat(inputs).st_size / (1024 * 1024)
    if file_size_mb > FILE_LIMIT_MB:
        logger.warning("Max file size exceeded")
        return f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB."

    # with open(inputs, "rb") as f:
    #     inputs = f.read()

    # load audio and pad/trim it to fit 30 seconds
    result = model.transcribe(audio=inputs, language='hindi',
                              word_timestamps=False, verbose=True)
#  ---------------------------------------------------

    print(result["text"])
    return result["text"]


audio_chunked = gr.Interface(
    fn=transcribe,
    inputs=inputs,
    outputs=outputs,
    allow_flagging="never",
    title=title,
    description=description,
    article=article,
)

microphone_chunked = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="microphone",
                        optional=True, type="filepath"),
    ],
    outputs=[
        gr.outputs.Textbox(label="Transcription").style(
            show_copy_button=True),
    ],
    allow_flagging="never",
    title=title,
    description=description,
    article=article,
)

demo = gr.Blocks()
with demo:
    gr.TabbedInterface([audio_chunked, microphone_chunked], [
                       "Audio File", "Microphone"])
demo.queue(concurrency_count=1, max_size=5)
demo.launch(show_api=False)


# gr.Interface(
#     inference,
#     inputs,
#     outputs,
#     verbose=True,
#     title=title,
#     description=description,
#     article=article,
#     examples=examples,
#     enable_queue=True,

# ).launch(share=True, debug=True)