Spaces:
Runtime error
Runtime error
File size: 9,507 Bytes
19befe8 5c66990 2d6bfef 003983b 47d9326 7a97be1 47d9326 2d6bfef 47d9326 003983b 2d6bfef fdad218 003983b 47d9326 003983b 47d9326 003983b 47d9326 003983b 47d9326 003983b 47d9326 003983b 47d9326 fea35c3 12001bc 47d9326 003983b 2d6bfef 7a97be1 003983b 2d6bfef 003983b 2d6bfef 47d9326 fdad218 2d6bfef fdad218 2d6bfef 47d9326 003983b 47d9326 003983b fdad218 2d6bfef fdad218 47d9326 2d6bfef 47d9326 003983b 47d9326 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
os.system("pip install git+https://github.com/openai/whisper.git")
import pysrt
import pandas as pd
from pytube import YouTube
from datetime import timedelta
import whisper
from subprocess import call
import gradio as gr
import logging
# from transformers.pipelines.audio_utils import ffmpeg_read
logger = logging.getLogger("whisper-jax-app")
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter(
"%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)
FILE_LIMIT_MB = 1000
def run_cmd(command):
try:
print(command)
call(command)
except KeyboardInterrupt:
print("Process interrupted")
sys.exit(1)
def inference(text):
cmd = ['tts', '--text', text]
run_cmd(cmd)
return 'tts_output.wav'
baseModel = whisper.load_model("base")
df_init = pd.DataFrame(columns=['start', 'end', 'text'])
transcription_df = gr.DataFrame(value=df_init, label="Transcription dataframe", row_count=(
0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
inputs = [gr.components.Audio(type="filepath", label="Add audio file"), gr.inputs.Audio(source="microphone",
optional=True, type="filepath"),]
outputs = [gr.components.Textbox(), transcription_df]
title = "Transcribe multi-lingual audio clips"
description = "An example of using OpenAi whisper to generate transcriptions for audio clips."
article = ""
audio_examples = [
["input/example-1.wav"],
["input/example-2.wav"],
]
def transcribe(inputs, microphone):
if (microphone is not None):
inputs = microphone
if inputs is None:
logger.warning("No audio file")
return [f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.", df_init]
file_size_mb = os.stat(inputs).st_size / (1024 * 1024)
# --------------------------------------------------- Check the file size ---------------------------------------------------
if file_size_mb > FILE_LIMIT_MB:
logger.warning("Max file size exceeded")
df = pd.DataFrame(columns=['start', 'end', 'text'])
return [f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.", df_init]
# --------------------------------------------------- Transcribe the audio ---------------------------------------------------
result = baseModel.transcribe(audio=inputs, language='english',
verbose=False)
srtFilename = os.path.join("output/SrtFiles", inputs.split(
'/')[-1].split('.')[0]+'.srt')
# --------------------------------------------------- Clear the file if exists ---------------------------------------------------
if os.path.exists(srtFilename):
os.remove(srtFilename)
with open(srtFilename, 'w', encoding='utf-8') as srtFile:
srtFile.write('')
# --------------------------------------------------- Write the file ---------------------------------------------------
segments = result['segments']
for segment in segments:
startTime = str(0)+str(timedelta(seconds=int(segment['start'])))+',000'
endTime = str(0)+str(timedelta(seconds=int(segment['end'])))+',000'
text = segment['text']
segmentId = segment['id']+1
segment = f"{segmentId}\n{startTime} --> {endTime}\n{text[1:] if text[0] is ' ' else text}\n\n"
with open(srtFilename, 'a', encoding='utf-8') as srtFile:
srtFile.write(segment)
# ------------------------------------------- Read the file and Prepare to display ---------------------------------------
try:
srt_path = srtFilename
df = pd.DataFrame(columns=['start', 'end', 'text'])
subs = pysrt.open(srt_path)
objects = []
for sub in subs:
start_hours = str(str(sub.start.hours) + "00")[0:2] if len(
str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2]
end_hours = str(str(sub.end.hours) + "00")[0:2] if len(
str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2]
start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len(
str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2]
end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len(
str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2]
start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len(
str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2]
end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len(
str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2]
start = start_hours + ":" + start_minutes + ":" + start_seconds + ",000"
end = end_hours + ":" + end_minutes + ":" + end_seconds + ",000"
text = sub.text
objects.append([start, end, text])
df = pd.DataFrame(objects, columns=['start', 'end', 'text'])
except Exception as e:
print('Error: ', e)
df = df_init
return [result["text"], df]
# Transcribe youtube video
# define function for transcription
def youtube_transcript(url):
try:
if url:
yt = YouTube(url, use_oauth=True)
source = yt.streams.filter(progressive=True, file_extension='mp4').order_by(
'resolution').desc().first().download('output/youtube')
transcript = baseModel.transcribe(source)
return transcript["text"]
except Exception as e:
print('Error: ', e)
return 'Error: ' + str(e)
def displaySrtFile(srtFilename):
with open(srtFilename, 'r', encoding='utf-8') as srtFile:
srtContent = srtFile.read()
try:
df = pd.DataFrame(columns=['start', 'end', 'text'])
srt_path = srtFilename
subs = pysrt.open(srt_path)
objects = []
for sub in subs:
start_hours = str(str(sub.start.hours) + "00")[0:2] if len(
str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2]
end_hours = str(str(sub.end.hours) + "00")[0:2] if len(
str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2]
start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len(
str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2]
end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len(
str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2]
start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len(
str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2]
end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len(
str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2]
start_millis = str(str(sub.start.milliseconds) + "000")[0:3]
end_millis = str(str(sub.end.milliseconds) + "000")[0:3]
objects.append([sub.text, f'{start_hours}:{start_minutes}:{start_seconds}.{start_millis}',
f'{end_hours}:{end_minutes}:{end_seconds}.{end_millis}'])
for object in objects:
srt_to_df = {
'start': [object[1]],
'end': [object[2]],
'text': [object[0]]
}
df = pd.concat([df, pd.DataFrame(srt_to_df)])
except Exception as e:
print("Error creating srt df")
return srtContent
audio_chunked = gr.Interface(
fn=transcribe,
inputs=inputs,
outputs=outputs,
allow_flagging="never",
title=title,
description=description,
article=article,
examples=audio_examples,
)
# microphone_chunked = gr.Interface(
# fn=transcribe,
# inputs=[
# gr.inputs.Audio(source="microphone",
# optional=True, type="filepath"),
# ],
# outputs=[
# gr.outputs.Textbox(label="Transcription").style(
# show_copy_button=True),
# ],
# allow_flagging="never",
# title=title,
# description=description,
# article=article,
# )
youtube_chunked = gr.Interface(
fn=youtube_transcript,
inputs=[
gr.inputs.Textbox(label="Youtube URL", type="text"),
],
outputs=[
gr.outputs.Textbox(label="Transcription").style(
show_copy_button=True),
],
allow_flagging="never",
title=title,
description=description,
article=article,
examples=[
["https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24",],
["https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren",],
["https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision"]
],
)
demo = gr.Blocks()
with demo:
gr.TabbedInterface([audio_chunked, youtube_chunked], [
"Audio File", "Youtube"])
demo.queue(concurrency_count=1, max_size=5)
demo.launch(show_api=False)
|