Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,191 Bytes
e35c029 b194803 e35c029 c62ab28 e35c029 ce0a6c0 c27bfca e35c029 c970642 b194803 e35c029 6d5e85a e35c029 b033d86 e35c029 b033d86 8232dd0 f7c781f e35c029 b033d86 e35c029 939a9a7 cafc1d1 939a9a7 e35c029 2febbfb 8bf32ed 2febbfb 8bf32ed 939a9a7 8bf32ed 2febbfb 939a9a7 2febbfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
import spaces
import torch
import torchvision.transforms
import numpy as np
from transformers import AutoModel
from theia.decoding import load_feature_stats, prepare_depth_decoder, prepare_mask_generator, decode_everything
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
@spaces.GPU(duration=90)
def run_theia(image):
theia_model = AutoModel.from_pretrained("theaiinstitute/theia-tiny-patch16-224-cddsv", trust_remote_code=True)
theia_model = theia_model.to('cuda')
target_model_names = [
"google/vit-huge-patch14-224-in21k",
"facebook/dinov2-large",
"openai/clip-vit-large-patch14",
"facebook/sam-vit-huge",
"LiheYoung/depth-anything-large-hf",
]
feature_means, feature_vars = load_feature_stats(target_model_names, stat_file_root="feature_stats")
mask_generator, sam_model = prepare_mask_generator('cuda')
depth_anything_model_name = "LiheYoung/depth-anything-large-hf"
depth_anything_decoder, _ = prepare_depth_decoder(depth_anything_model_name, 'cuda')
image = torchvision.transforms.Resize(size=(224, 224))(image)
images = [image]
theia_decode_results, gt_decode_results = decode_everything(
theia_model=theia_model,
feature_means=feature_means,
feature_vars=feature_vars,
images=images,
mask_generator=mask_generator,
sam_model=sam_model,
depth_anything_decoder=depth_anything_decoder,
pred_iou_thresh=0.5,
stability_score_thresh=0.7,
gt=True,
device='cuda',
)
_, width, _ = theia_decode_results[0].shape
theia_decode_results = (255.0 * theia_decode_results[0]).astype(np.uint8)[:, width // 4:, :]
gt_decode_results = (255.0 * gt_decode_results[0]).astype(np.uint8)[:, width // 4:, :]
return [theia_decode_results, gt_decode_results]
with gr.Blocks() as demo:
gr.HTML(load_description("gradio_title.md"))
gr.Markdown("This space demonstrates decoding Theia-predicted VFM representations to their original teacher model outputs. For DINOv2 we apply the PCA visualization, for SAM we use its decoder to generate segmentation masks (but with SAM's pipeline of prompting), and for Depth-Anything we use its decoder head to do depth prediction.")
with gr.Row():
with gr.Column():
gr.Markdown("### Input Image")
input_image = gr.Image(type="pil", label="Input Image")
submit_button = gr.Button("Submit")
with gr.Column():
gr.Markdown("### Theia Results")
theia_output = gr.Image(label="DINOv2, SAM, Depth Anything", type="numpy")
gr.Markdown("### Ground Truth")
gt_output = gr.Image(label="DINOv2, SAM, Depth Anything", type="numpy")
submit_button.click(run_theia, inputs=input_image, outputs=[theia_output, gt_output])
demo.launch() |