File size: 4,101 Bytes
e35c029
b194803
e35c029
c62ab28
e35c029
 
 
 
ce0a6c0
 
 
 
 
 
 
c27bfca
9e62052
c970642
b194803
e35c029
 
 
 
 
 
 
6d5e85a
e35c029
b033d86
e35c029
b033d86
8232dd0
f7c781f
e35c029
 
2eca07c
e35c029
 
 
 
 
 
 
9e62052
 
e35c029
b033d86
e35c029
 
939a9a7
9e62052
 
 
 
 
 
 
 
 
939a9a7
6273591
 
 
 
e35c029
2febbfb
 
 
 
 
 
044c290
97df5fd
 
2febbfb
 
 
044c290
 
 
6273591
9e62052
 
 
 
 
2febbfb
b25a60b
2febbfb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import gradio as gr
import spaces
import torch
import torchvision.transforms
import numpy as np
from transformers import AutoModel
from theia.decoding import load_feature_stats, prepare_depth_decoder, prepare_mask_generator, decode_everything


def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content


@spaces.GPU(duration=90)
def run_theia(image, pred_iou_thresh, stability_score_thresh):
    theia_model = AutoModel.from_pretrained("theaiinstitute/theia-tiny-patch16-224-cddsv", trust_remote_code=True)
    theia_model = theia_model.to('cuda')
    target_model_names = [
        "google/vit-huge-patch14-224-in21k",
        "facebook/dinov2-large",
        "openai/clip-vit-large-patch14",
        "facebook/sam-vit-huge",
        "LiheYoung/depth-anything-large-hf",
    ]
    feature_means, feature_vars = load_feature_stats(target_model_names, stat_file_root="feature_stats")
    
    mask_generator, sam_model = prepare_mask_generator('cuda')
    depth_anything_model_name = "LiheYoung/depth-anything-large-hf"
    depth_anything_decoder, _ = prepare_depth_decoder(depth_anything_model_name, 'cuda')

    image = torchvision.transforms.Resize(size=(224, 224))(image)
    images = [image]
    
    theia_decode_results, gt_results = decode_everything(
        theia_model=theia_model,
        feature_means=feature_means,
        feature_vars=feature_vars,
        images=images,
        mask_generator=mask_generator,
        sam_model=sam_model,
        depth_anything_decoder=depth_anything_decoder,
        pred_iou_thresh=pred_iou_thresh,
        stability_score_thresh=stability_score_thresh,
        gt=True,
        device='cuda',
    )

    _, width, _ = theia_decode_results[0].shape
    theia_decode_results = (255.0 * theia_decode_results[0]).astype(np.uint8)
    theia_decode_dino = theia_decode_results[:, width // 4 : 2 * width // 4, :]
    theia_decode_sam = theia_decode_results[:, 2 * width // 4 : 3 * width // 4, :]
    theia_decode_depth = theia_decode_results[:, 3 * width // 4 :, :]

    gt_results = (255.0 * gt_results[0]).astype(np.uint8)
    gt_dino = gt_results[:, width // 4 : 2 * width // 4, :]
    gt_sam = gt_results[:, 2 * width // 4 : 3 * width // 4, :]
    gt_depth = gt_results[:, 3 * width // 4 :, :]

    dinov2_output = [(theia_decode_dino, "Theia"), (gt_dino, "Ground Truth")]
    sam_output = [(theia_decode_sam, "Theia"), (gt_sam, "Ground Truth")]
    depth_anything_output = [(theia_decode_depth, "Theia"), (gt_depth, "Ground Truth")]
    return dinov2_output, sam_output, depth_anything_output

with gr.Blocks() as demo:
    gr.HTML(load_description("gradio_title.md"))
    gr.Markdown("This space demonstrates decoding Theia-predicted VFM representations to their original teacher model outputs. For DINOv2 we apply the PCA visualization, for SAM we use its decoder to generate segmentation masks (but with SAM's pipeline of prompting), and for Depth-Anything we use its decoder head to do depth prediction.")

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="pil")
            pred_iou_thresh = gr.Slider(0.05, 0.95, step=0.05, value=0.5, label="SAM Pred IoU Thresh")
            stability_score_thresh = gr.Slider(0.05, 0.95, step=0.05, value=0.7, label="SAM Stability Score Thresh")
            submit_button = gr.Button("Submit")
        
        with gr.Column():
            dinov2_output = gr.Gallery(label="DINOv2", type="numpy")
            sam_output = gr.Gallery(label="SAM", type="numpy")
            depth_anything_output = gr.Gallery(label="Depth-Anything", type="numpy")

    submit_button.click(
        run_theia,
        inputs=[input_image, pred_iou_thresh, stability_score_thresh],
        outputs=[dinov2_output, sam_output, depth_anything_output]
    )

demo.queue()
demo.launch()