# AutoencoderKL training example ## Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` ## Training on CIFAR10 Please replace the validation image with your own image. ```bash accelerate launch train_autoencoderkl.py \ --pretrained_model_name_or_path stabilityai/sd-vae-ft-mse \ --dataset_name=cifar10 \ --image_column=img \ --validation_image images/bird.jpg images/car.jpg images/dog.jpg images/frog.jpg \ --num_train_epochs 100 \ --gradient_accumulation_steps 2 \ --learning_rate 4.5e-6 \ --lr_scheduler cosine \ --report_to wandb \ ``` ## Training on ImageNet ```bash accelerate launch train_autoencoderkl.py \ --pretrained_model_name_or_path stabilityai/sd-vae-ft-mse \ --num_train_epochs 100 \ --gradient_accumulation_steps 2 \ --learning_rate 4.5e-6 \ --lr_scheduler cosine \ --report_to wandb \ --mixed_precision bf16 \ --train_data_dir /path/to/ImageNet/train \ --validation_image ./image.png \ --decoder_only ```