# Copyright 2024 The HuggingFace Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, LlamaConfig, LlamaModel, LlamaTokenizer from diffusers import ( AutoencoderKLHunyuanVideo, FlowMatchEulerDiscreteScheduler, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel, ) from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_pipelines_common import PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, to_np enable_full_determinism() class HunyuanVideoPipelineFastTests(PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, unittest.TestCase): pipeline_class = HunyuanVideoPipeline params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"]) batch_params = frozenset(["prompt"]) required_optional_params = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback_on_step_end", "callback_on_step_end_tensor_inputs", ] ) # there is no xformers processor for Flux test_xformers_attention = False test_layerwise_casting = True def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1): torch.manual_seed(0) transformer = HunyuanVideoTransformer3DModel( in_channels=4, out_channels=4, num_attention_heads=2, attention_head_dim=10, num_layers=num_layers, num_single_layers=num_single_layers, num_refiner_layers=1, patch_size=1, patch_size_t=1, guidance_embeds=True, text_embed_dim=16, pooled_projection_dim=8, rope_axes_dim=(2, 4, 4), ) torch.manual_seed(0) vae = AutoencoderKLHunyuanVideo( in_channels=3, out_channels=3, latent_channels=4, down_block_types=( "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", ), up_block_types=( "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", ), block_out_channels=(8, 8, 8, 8), layers_per_block=1, act_fn="silu", norm_num_groups=4, scaling_factor=0.476986, spatial_compression_ratio=8, temporal_compression_ratio=4, mid_block_add_attention=True, ) torch.manual_seed(0) scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0) llama_text_encoder_config = LlamaConfig( bos_token_id=0, eos_token_id=2, hidden_size=16, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=2, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=32, ) clip_text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=8, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=2, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=32, ) torch.manual_seed(0) text_encoder = LlamaModel(llama_text_encoder_config) tokenizer = LlamaTokenizer.from_pretrained("finetrainers/dummy-hunyaunvideo", subfolder="tokenizer") torch.manual_seed(0) text_encoder_2 = CLIPTextModel(clip_text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "transformer": transformer, "vae": vae, "scheduler": scheduler, "text_encoder": text_encoder, "text_encoder_2": text_encoder_2, "tokenizer": tokenizer, "tokenizer_2": tokenizer_2, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "dance monkey", "prompt_template": { "template": "{}", "crop_start": 0, }, "generator": generator, "num_inference_steps": 2, "guidance_scale": 4.5, "height": 16, "width": 16, # 4 * k + 1 is the recommendation "num_frames": 9, "max_sequence_length": 16, "output_type": "pt", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) video = pipe(**inputs).frames generated_video = video[0] self.assertEqual(generated_video.shape, (9, 3, 16, 16)) expected_video = torch.randn(9, 3, 16, 16) max_diff = np.abs(generated_video - expected_video).max() self.assertLessEqual(max_diff, 1e10) def test_callback_inputs(self): sig = inspect.signature(self.pipeline_class.__call__) has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters has_callback_step_end = "callback_on_step_end" in sig.parameters if not (has_callback_tensor_inputs and has_callback_step_end): return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) self.assertTrue( hasattr(pipe, "_callback_tensor_inputs"), f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", ) def callback_inputs_subset(pipe, i, t, callback_kwargs): # iterate over callback args for tensor_name, tensor_value in callback_kwargs.items(): # check that we're only passing in allowed tensor inputs assert tensor_name in pipe._callback_tensor_inputs return callback_kwargs def callback_inputs_all(pipe, i, t, callback_kwargs): for tensor_name in pipe._callback_tensor_inputs: assert tensor_name in callback_kwargs # iterate over callback args for tensor_name, tensor_value in callback_kwargs.items(): # check that we're only passing in allowed tensor inputs assert tensor_name in pipe._callback_tensor_inputs return callback_kwargs inputs = self.get_dummy_inputs(torch_device) # Test passing in a subset inputs["callback_on_step_end"] = callback_inputs_subset inputs["callback_on_step_end_tensor_inputs"] = ["latents"] output = pipe(**inputs)[0] # Test passing in a everything inputs["callback_on_step_end"] = callback_inputs_all inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs output = pipe(**inputs)[0] def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): is_last = i == (pipe.num_timesteps - 1) if is_last: callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) return callback_kwargs inputs["callback_on_step_end"] = callback_inputs_change_tensor inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs output = pipe(**inputs)[0] assert output.abs().sum() < 1e10 def test_attention_slicing_forward_pass( self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 ): if not self.test_attention_slicing: return components = self.get_dummy_components() pipe = self.pipeline_class(**components) for component in pipe.components.values(): if hasattr(component, "set_default_attn_processor"): component.set_default_attn_processor() pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) output_without_slicing = pipe(**inputs)[0] pipe.enable_attention_slicing(slice_size=1) inputs = self.get_dummy_inputs(generator_device) output_with_slicing1 = pipe(**inputs)[0] pipe.enable_attention_slicing(slice_size=2) inputs = self.get_dummy_inputs(generator_device) output_with_slicing2 = pipe(**inputs)[0] if test_max_difference: max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() self.assertLess( max(max_diff1, max_diff2), expected_max_diff, "Attention slicing should not affect the inference results", ) def test_vae_tiling(self, expected_diff_max: float = 0.2): # Seems to require higher tolerance than the other tests expected_diff_max = 0.6 generator_device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to("cpu") pipe.set_progress_bar_config(disable=None) # Without tiling inputs = self.get_dummy_inputs(generator_device) inputs["height"] = inputs["width"] = 128 output_without_tiling = pipe(**inputs)[0] # With tiling pipe.vae.enable_tiling( tile_sample_min_height=96, tile_sample_min_width=96, tile_sample_stride_height=64, tile_sample_stride_width=64, ) inputs = self.get_dummy_inputs(generator_device) inputs["height"] = inputs["width"] = 128 output_with_tiling = pipe(**inputs)[0] self.assertLess( (to_np(output_without_tiling) - to_np(output_with_tiling)).max(), expected_diff_max, "VAE tiling should not affect the inference results", ) # TODO(aryan): Create a dummy gemma model with smol vocab size @unittest.skip( "A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error." ) def test_inference_batch_consistent(self): pass @unittest.skip( "A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error." ) def test_inference_batch_single_identical(self): pass