# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import AutoencoderKLCogVideoX from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, torch_device, ) from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class AutoencoderKLCogVideoXTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = AutoencoderKLCogVideoX main_input_name = "sample" base_precision = 1e-2 def get_autoencoder_kl_cogvideox_config(self): return { "in_channels": 3, "out_channels": 3, "down_block_types": ( "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", ), "up_block_types": ( "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", ), "block_out_channels": (8, 8, 8, 8), "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 2, "temporal_compression_ratio": 4, } @property def dummy_input(self): batch_size = 4 num_frames = 8 num_channels = 3 sizes = (16, 16) image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 8, 16, 16) @property def output_shape(self): return (3, 8, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = self.get_autoencoder_kl_cogvideox_config() inputs_dict = self.dummy_input return init_dict, inputs_dict def test_enable_disable_tiling(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() torch.manual_seed(0) model = self.model_class(**init_dict).to(torch_device) inputs_dict.update({"return_dict": False}) torch.manual_seed(0) output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] torch.manual_seed(0) model.enable_tiling() output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] self.assertLess( (output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), 0.5, "VAE tiling should not affect the inference results", ) torch.manual_seed(0) model.disable_tiling() output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] self.assertEqual( output_without_tiling.detach().cpu().numpy().all(), output_without_tiling_2.detach().cpu().numpy().all(), "Without tiling outputs should match with the outputs when tiling is manually disabled.", ) def test_enable_disable_slicing(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() torch.manual_seed(0) model = self.model_class(**init_dict).to(torch_device) inputs_dict.update({"return_dict": False}) torch.manual_seed(0) output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] torch.manual_seed(0) model.enable_slicing() output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] self.assertLess( (output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), 0.5, "VAE slicing should not affect the inference results", ) torch.manual_seed(0) model.disable_slicing() output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] self.assertEqual( output_without_slicing.detach().cpu().numpy().all(), output_without_slicing_2.detach().cpu().numpy().all(), "Without slicing outputs should match with the outputs when slicing is manually disabled.", ) def test_gradient_checkpointing_is_applied(self): expected_set = { "CogVideoXDownBlock3D", "CogVideoXDecoder3D", "CogVideoXEncoder3D", "CogVideoXUpBlock3D", "CogVideoXMidBlock3D", } super().test_gradient_checkpointing_is_applied(expected_set=expected_set) def test_forward_with_norm_groups(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() init_dict["norm_num_groups"] = 16 init_dict["block_out_channels"] = (16, 32, 32, 32) model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.to_tuple()[0] self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") @unittest.skip("Unsupported test.") def test_outputs_equivalence(self): pass