import io import os import shutil import uuid import torch import random import spaces import gradio as gr import numpy as np from PIL import Image, ImageCms import torch from diffusers import FluxTransformer2DModel from diffusers.utils import load_image from pipeline_flux_control_removal import FluxControlRemovalPipeline torch.set_grad_enabled(False) image_path = mask_path = None image_examples = [...] image_path = mask_path =None image_examples = [ [ "example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png", "example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png" ], [ "example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png", "example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png" ], [ "example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png", "example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png" ], [ "example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png", "example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png" ], [ "example/image/9a3b6af9-c733-46a4-88d4-d77604194102.png", "example/mask/9a3b6af9-c733-46a4-88d4-d77604194102.png" ], [ "example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png", "example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png" ], [ "example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png", "example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png" ] ] @spaces.GPU(enable_queue=True) def load_model(base_model_path, lora_path): global pipe transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16) gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%")) # enable image inputs with torch.no_grad(): initial_input_channels = transformer.config.in_channels new_linear = torch.nn.Linear( transformer.x_embedder.in_features*4, transformer.x_embedder.out_features, bias=transformer.x_embedder.bias is not None, dtype=transformer.dtype, device=transformer.device, ) new_linear.weight.zero_() new_linear.weight[:, :initial_input_channels].copy_(transformer.x_embedder.weight) if transformer.x_embedder.bias is not None: new_linear.bias.copy_(transformer.x_embedder.bias) transformer.x_embedder = new_linear transformer.register_to_config(in_channels=initial_input_channels*4) pipe = FluxControlRemovalPipeline.from_pretrained( base_model_path, transformer=transformer, torch_dtype=torch.bfloat16 ).to("cuda") pipe.transformer.to(torch.bfloat16) gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%")) gr.Info(str(f"Inject LoRA: {lora_path}")) pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors") gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%")) @spaces.GPU(enable_queue=True) def set_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) @spaces.GPU(enable_queue=True) def predict( input_image, prompt, ddim_steps, seed, scale, image_paths, mask_paths ): global image_path, mask_path gr.Info(str(f"Set seed = {seed}")) if image_paths is not None: input_image["background"] = load_image(image_paths).convert("RGB") input_image["layers"][0] = load_image(mask_paths).convert("RGB") size1, size2 = input_image["background"].convert("RGB").size icc_profile = input_image["background"].info.get('icc_profile') if icc_profile: gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB...")) srgb_profile = ImageCms.createProfile("sRGB") io_handle = io.BytesIO(icc_profile) src_profile = ImageCms.ImageCmsProfile(io_handle) input_image["background"] = ImageCms.profileToProfile(input_image["background"], src_profile, srgb_profile) input_image["background"].info.pop('icc_profile', None) if size1 < size2: input_image["background"] = input_image["background"].convert("RGB").resize((1024, int(size2 / size1 * 1024))) else: input_image["background"] = input_image["background"].convert("RGB").resize((int(size1 / size2 * 1024), 1024)) img = np.array(input_image["background"].convert("RGB")) W = int(np.shape(img)[0] - np.shape(img)[0] % 8) H = int(np.shape(img)[1] - np.shape(img)[1] % 8) input_image["background"] = input_image["background"].resize((H, W)) input_image["layers"][0] = input_image["layers"][0].resize((H, W)) if seed == -1: seed = random.randint(1, 2147483647) set_seed(random.randint(1, 2147483647)) else: set_seed(seed) if image_paths is None: img=input_image["layers"][0] img_data = np.array(img) alpha_channel = img_data[:, :, 3] white_background = np.ones_like(alpha_channel) * 255 gray_image = white_background.copy() gray_image[alpha_channel == 0] = 0 gray_image_pil = Image.fromarray(gray_image).convert('L') else: gray_image_pil = input_image["layers"][0] result = pipe( prompt=prompt, control_image=input_image["background"].convert("RGB"), control_mask=gray_image_pil.convert("RGB"), width=H, height=W, num_inference_steps=ddim_steps, generator=torch.Generator("cuda").manual_seed(seed), guidance_scale=scale, max_sequence_length=512, ).images[0] mask_np = np.array(input_image["layers"][0].convert("RGB")) red = np.array(input_image["background"]).astype("float") * 1 red[:, :, 0] = 180.0 red[:, :, 2] = 0 red[:, :, 1] = 0 result_m = np.array(input_image["background"]) result_m = Image.fromarray( ( result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red ).astype("uint8") ) dict_res = [input_image["background"], input_image["layers"][0], result_m, result] dict_out = [result] image_path = None mask_path = None return dict_out, dict_res def infer( input_image, ddim_steps, seed, scale, removal_prompt, ): img_path = image_path msk_path = mask_path return predict(input_image, removal_prompt, ddim_steps, seed, scale, img_path, msk_path ) def process_example(image_paths, mask_paths): global image_path, mask_path image = Image.open(image_paths).convert("RGB") mask = Image.open(mask_paths).convert("L") black_background = Image.new("RGB", image.size, (0, 0, 0)) masked_image = Image.composite(black_background, image, mask) image_path = image_paths mask_path = mask_paths return masked_image custom_css = """ .contain { max-width: 1200px !important; } .custom-image { border: 2px dashed #7e22ce !important; border-radius: 12px !important; transition: all 0.3s ease !important; } .custom-image:hover { border-color: #9333ea !important; box-shadow: 0 4px 15px rgba(158, 109, 202, 0.2) !important; } .btn-primary { background: linear-gradient(45deg, #7e22ce, #9333ea) !important; border: none !important; color: white !important; border-radius: 8px !important; } #inline-examples { border: 1px solid #e2e8f0 !important; border-radius: 12px !important; padding: 16px !important; margin-top: 8px !important; } #inline-examples .thumbnail { border-radius: 8px !important; transition: transform 0.2s ease !important; } #inline-examples .thumbnail:hover { transform: scale(1.05); box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); } .example-title h3 { margin: 0 0 12px 0 !important; color: #475569 !important; font-size: 1.1em !important; display: flex !important; align-items: center !important; } .example-title h3::before { content: "📚"; margin-right: 8px; font-size: 1.2em; } .row { align-items: stretch !important; } .panel { height: 100%; } """ with gr.Blocks( css=custom_css, theme=gr.themes.Soft( primary_hue="purple", secondary_hue="purple", font=[gr.themes.GoogleFont('Inter'), 'sans-serif'] ), title="Omnieraser" ) as demo: base_model_path = 'black-forest-labs/FLUX.1-dev' lora_path = 'theSure/Omnieraser' load_model(base_model_path=base_model_path, lora_path=lora_path) ddim_steps = gr.Slider(visible=False, value=28) scale = gr.Slider(visible=False, value=3.5) seed = gr.Slider(visible=False, value=-1) removal_prompt = gr.Textbox(visible=False, value="There is nothing here.") gr.Markdown("""