theSure commited on
Commit
fd93b93
·
verified ·
1 Parent(s): c242d06

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -50,7 +50,7 @@ image_examples = [
50
 
51
  ]
52
 
53
- @spaces.GPU(duration=120)
54
  def load_model(base_model_path, lora_path):
55
  global pipe
56
  transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
@@ -84,7 +84,7 @@ def load_model(base_model_path, lora_path):
84
  gr.Info(str(f"Inject LoRA: {lora_path}"))
85
  pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
86
  gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
87
- @spaces.GPU(duration=120)
88
  def set_seed(seed):
89
  torch.manual_seed(seed)
90
  torch.cuda.manual_seed(seed)
@@ -92,7 +92,7 @@ def set_seed(seed):
92
  np.random.seed(seed)
93
  random.seed(seed)
94
 
95
- @spaces.GPU(duration=120)
96
  def predict(
97
  input_image,
98
  prompt,
@@ -147,7 +147,6 @@ def predict(
147
  gray_image_pil = Image.fromarray(gray_image).convert('L')
148
  else:
149
  gray_image_pil = input_image["layers"][0]
150
- load_model(base_model_path=base_model_path, lora_path=lora_path)
151
  result = pipe(
152
  prompt=prompt,
153
  control_image=input_image["background"].convert("RGB"),
 
50
 
51
  ]
52
 
53
+ @spaces.GPU(enable_queue=True)
54
  def load_model(base_model_path, lora_path):
55
  global pipe
56
  transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
 
84
  gr.Info(str(f"Inject LoRA: {lora_path}"))
85
  pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
86
  gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
87
+ @spaces.GPU(enable_queue=True)
88
  def set_seed(seed):
89
  torch.manual_seed(seed)
90
  torch.cuda.manual_seed(seed)
 
92
  np.random.seed(seed)
93
  random.seed(seed)
94
 
95
+ @spaces.GPU(enable_queue=True)
96
  def predict(
97
  input_image,
98
  prompt,
 
147
  gray_image_pil = Image.fromarray(gray_image).convert('L')
148
  else:
149
  gray_image_pil = input_image["layers"][0]
 
150
  result = pipe(
151
  prompt=prompt,
152
  control_image=input_image["background"].convert("RGB"),