theSure commited on
Commit
bfa305e
·
verified ·
1 Parent(s): 069a909

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -8
app.py CHANGED
@@ -6,7 +6,6 @@ import torch
6
  import random
7
  import spaces
8
  import gradio as gr
9
- print(gr.__version__)
10
  import numpy as np
11
 
12
  from PIL import Image, ImageCms
@@ -16,8 +15,6 @@ from diffusers.utils import load_image
16
  from pipeline_flux_control_removal import FluxControlRemovalPipeline
17
 
18
  torch.set_grad_enabled(False)
19
- device = "cuda"
20
- print(device)
21
  image_path = mask_path = None
22
  image_examples = [...]
23
  image_path = mask_path =None
@@ -52,6 +49,7 @@ image_examples = [
52
  ]
53
 
54
  ]
 
55
  @spaces.GPU(duration=120)
56
  def load_model(base_model_path, lora_path):
57
  global pipe
@@ -80,13 +78,12 @@ def load_model(base_model_path, lora_path):
80
  base_model_path,
81
  transformer=transformer,
82
  torch_dtype=torch.bfloat16
83
- ).to(device)
84
  pipe.transformer.to(torch.bfloat16)
85
  gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%"))
86
  gr.Info(str(f"Inject LoRA: {lora_path}"))
87
  pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
88
  gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
89
-
90
  @spaces.GPU(duration=120)
91
  def set_seed(seed):
92
  torch.manual_seed(seed)
@@ -95,7 +92,7 @@ def set_seed(seed):
95
  np.random.seed(seed)
96
  random.seed(seed)
97
 
98
- @spaces.GPU(duration=120)
99
  def predict(
100
  input_image,
101
  prompt,
@@ -276,7 +273,7 @@ with gr.Blocks(
276
  ),
277
  title="Omnieraser"
278
  ) as demo:
279
- base_model_path = "black-forest-labs/FLUX.1-dev"
280
  lora_path = 'theSure/Omnieraser'
281
  load_model(base_model_path=base_model_path, lora_path=lora_path)
282
 
@@ -366,6 +363,6 @@ with gr.Blocks(
366
  ],
367
  outputs=[inpaint_result, gallery]
368
  )
369
-
370
 
371
  demo.launch()
 
6
  import random
7
  import spaces
8
  import gradio as gr
 
9
  import numpy as np
10
 
11
  from PIL import Image, ImageCms
 
15
  from pipeline_flux_control_removal import FluxControlRemovalPipeline
16
 
17
  torch.set_grad_enabled(False)
 
 
18
  image_path = mask_path = None
19
  image_examples = [...]
20
  image_path = mask_path =None
 
49
  ]
50
 
51
  ]
52
+
53
  @spaces.GPU(duration=120)
54
  def load_model(base_model_path, lora_path):
55
  global pipe
 
78
  base_model_path,
79
  transformer=transformer,
80
  torch_dtype=torch.bfloat16
81
+ ).to("cuda")
82
  pipe.transformer.to(torch.bfloat16)
83
  gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%"))
84
  gr.Info(str(f"Inject LoRA: {lora_path}"))
85
  pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
86
  gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
 
87
  @spaces.GPU(duration=120)
88
  def set_seed(seed):
89
  torch.manual_seed(seed)
 
92
  np.random.seed(seed)
93
  random.seed(seed)
94
 
95
+ @spaces.GPU(duration=120)
96
  def predict(
97
  input_image,
98
  prompt,
 
273
  ),
274
  title="Omnieraser"
275
  ) as demo:
276
+ base_model_path = 'black-forest-labs/FLUX.1-dev'
277
  lora_path = 'theSure/Omnieraser'
278
  load_model(base_model_path=base_model_path, lora_path=lora_path)
279
 
 
363
  ],
364
  outputs=[inpaint_result, gallery]
365
  )
366
+
367
 
368
  demo.launch()