Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,6 @@ import torch
|
|
| 6 |
import random
|
| 7 |
import spaces
|
| 8 |
import gradio as gr
|
| 9 |
-
print(gr.__version__)
|
| 10 |
import numpy as np
|
| 11 |
|
| 12 |
from PIL import Image, ImageCms
|
|
@@ -16,8 +15,6 @@ from diffusers.utils import load_image
|
|
| 16 |
from pipeline_flux_control_removal import FluxControlRemovalPipeline
|
| 17 |
|
| 18 |
torch.set_grad_enabled(False)
|
| 19 |
-
device = "cuda"
|
| 20 |
-
print(device)
|
| 21 |
image_path = mask_path = None
|
| 22 |
image_examples = [...]
|
| 23 |
image_path = mask_path =None
|
|
@@ -52,6 +49,7 @@ image_examples = [
|
|
| 52 |
]
|
| 53 |
|
| 54 |
]
|
|
|
|
| 55 |
@spaces.GPU(duration=120)
|
| 56 |
def load_model(base_model_path, lora_path):
|
| 57 |
global pipe
|
|
@@ -80,13 +78,12 @@ def load_model(base_model_path, lora_path):
|
|
| 80 |
base_model_path,
|
| 81 |
transformer=transformer,
|
| 82 |
torch_dtype=torch.bfloat16
|
| 83 |
-
).to(
|
| 84 |
pipe.transformer.to(torch.bfloat16)
|
| 85 |
gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%"))
|
| 86 |
gr.Info(str(f"Inject LoRA: {lora_path}"))
|
| 87 |
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
|
| 88 |
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
|
| 89 |
-
|
| 90 |
@spaces.GPU(duration=120)
|
| 91 |
def set_seed(seed):
|
| 92 |
torch.manual_seed(seed)
|
|
@@ -95,7 +92,7 @@ def set_seed(seed):
|
|
| 95 |
np.random.seed(seed)
|
| 96 |
random.seed(seed)
|
| 97 |
|
| 98 |
-
@spaces.GPU(duration=120)
|
| 99 |
def predict(
|
| 100 |
input_image,
|
| 101 |
prompt,
|
|
@@ -276,7 +273,7 @@ with gr.Blocks(
|
|
| 276 |
),
|
| 277 |
title="Omnieraser"
|
| 278 |
) as demo:
|
| 279 |
-
base_model_path =
|
| 280 |
lora_path = 'theSure/Omnieraser'
|
| 281 |
load_model(base_model_path=base_model_path, lora_path=lora_path)
|
| 282 |
|
|
@@ -366,6 +363,6 @@ with gr.Blocks(
|
|
| 366 |
],
|
| 367 |
outputs=[inpaint_result, gallery]
|
| 368 |
)
|
| 369 |
-
|
| 370 |
|
| 371 |
demo.launch()
|
|
|
|
| 6 |
import random
|
| 7 |
import spaces
|
| 8 |
import gradio as gr
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
|
| 11 |
from PIL import Image, ImageCms
|
|
|
|
| 15 |
from pipeline_flux_control_removal import FluxControlRemovalPipeline
|
| 16 |
|
| 17 |
torch.set_grad_enabled(False)
|
|
|
|
|
|
|
| 18 |
image_path = mask_path = None
|
| 19 |
image_examples = [...]
|
| 20 |
image_path = mask_path =None
|
|
|
|
| 49 |
]
|
| 50 |
|
| 51 |
]
|
| 52 |
+
|
| 53 |
@spaces.GPU(duration=120)
|
| 54 |
def load_model(base_model_path, lora_path):
|
| 55 |
global pipe
|
|
|
|
| 78 |
base_model_path,
|
| 79 |
transformer=transformer,
|
| 80 |
torch_dtype=torch.bfloat16
|
| 81 |
+
).to("cuda")
|
| 82 |
pipe.transformer.to(torch.bfloat16)
|
| 83 |
gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%"))
|
| 84 |
gr.Info(str(f"Inject LoRA: {lora_path}"))
|
| 85 |
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
|
| 86 |
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
|
|
|
|
| 87 |
@spaces.GPU(duration=120)
|
| 88 |
def set_seed(seed):
|
| 89 |
torch.manual_seed(seed)
|
|
|
|
| 92 |
np.random.seed(seed)
|
| 93 |
random.seed(seed)
|
| 94 |
|
| 95 |
+
@spaces.GPU(duration=120)
|
| 96 |
def predict(
|
| 97 |
input_image,
|
| 98 |
prompt,
|
|
|
|
| 273 |
),
|
| 274 |
title="Omnieraser"
|
| 275 |
) as demo:
|
| 276 |
+
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
| 277 |
lora_path = 'theSure/Omnieraser'
|
| 278 |
load_model(base_model_path=base_model_path, lora_path=lora_path)
|
| 279 |
|
|
|
|
| 363 |
],
|
| 364 |
outputs=[inpaint_result, gallery]
|
| 365 |
)
|
| 366 |
+
|
| 367 |
|
| 368 |
demo.launch()
|