Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import torch | |
| from diffusers import ( | |
| ControlNetModel, | |
| ) | |
| from diffusers.utils.testing_utils import ( | |
| backend_empty_cache, | |
| enable_full_determinism, | |
| require_torch_accelerator, | |
| slow, | |
| torch_device, | |
| ) | |
| enable_full_determinism() | |
| class ControlNetModelSingleFileTests(unittest.TestCase): | |
| model_class = ControlNetModel | |
| ckpt_path = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" | |
| repo_id = "lllyasviel/control_v11p_sd15_canny" | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def test_single_file_components(self): | |
| model = self.model_class.from_pretrained(self.repo_id) | |
| model_single_file = self.model_class.from_single_file(self.ckpt_path) | |
| PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] | |
| for param_name, param_value in model_single_file.config.items(): | |
| if param_name in PARAMS_TO_IGNORE: | |
| continue | |
| assert ( | |
| model.config[param_name] == param_value | |
| ), f"{param_name} differs between single file loading and pretrained loading" | |
| def test_single_file_arguments(self): | |
| model_default = self.model_class.from_single_file(self.ckpt_path) | |
| assert model_default.config.upcast_attention is False | |
| assert model_default.dtype == torch.float32 | |
| torch_dtype = torch.float16 | |
| upcast_attention = True | |
| model = self.model_class.from_single_file( | |
| self.ckpt_path, | |
| upcast_attention=upcast_attention, | |
| torch_dtype=torch_dtype, | |
| ) | |
| assert model.config.upcast_attention == upcast_attention | |
| assert model.dtype == torch_dtype | |