Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import torch | |
from diffusers import ( | |
ControlNetModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
backend_empty_cache, | |
enable_full_determinism, | |
require_torch_accelerator, | |
slow, | |
torch_device, | |
) | |
enable_full_determinism() | |
class ControlNetModelSingleFileTests(unittest.TestCase): | |
model_class = ControlNetModel | |
ckpt_path = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" | |
repo_id = "lllyasviel/control_v11p_sd15_canny" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def test_single_file_components(self): | |
model = self.model_class.from_pretrained(self.repo_id) | |
model_single_file = self.model_class.from_single_file(self.ckpt_path) | |
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] | |
for param_name, param_value in model_single_file.config.items(): | |
if param_name in PARAMS_TO_IGNORE: | |
continue | |
assert ( | |
model.config[param_name] == param_value | |
), f"{param_name} differs between single file loading and pretrained loading" | |
def test_single_file_arguments(self): | |
model_default = self.model_class.from_single_file(self.ckpt_path) | |
assert model_default.config.upcast_attention is False | |
assert model_default.dtype == torch.float32 | |
torch_dtype = torch.float16 | |
upcast_attention = True | |
model = self.model_class.from_single_file( | |
self.ckpt_path, | |
upcast_attention=upcast_attention, | |
torch_dtype=torch_dtype, | |
) | |
assert model.config.upcast_attention == upcast_attention | |
assert model.dtype == torch_dtype | |