theSure's picture
Upload 2037 files
a49cc2f verified
import gc
import unittest
import numpy as np
import torch
import torch.nn as nn
from diffusers import (
AuraFlowPipeline,
AuraFlowTransformer2DModel,
FluxPipeline,
FluxTransformer2DModel,
GGUFQuantizationConfig,
SD3Transformer2DModel,
StableDiffusion3Pipeline,
)
from diffusers.utils.testing_utils import (
is_gguf_available,
nightly,
numpy_cosine_similarity_distance,
require_accelerate,
require_big_gpu_with_torch_cuda,
require_gguf_version_greater_or_equal,
torch_device,
)
if is_gguf_available():
from diffusers.quantizers.gguf.utils import GGUFLinear, GGUFParameter
@nightly
@require_big_gpu_with_torch_cuda
@require_accelerate
@require_gguf_version_greater_or_equal("0.10.0")
class GGUFSingleFileTesterMixin:
ckpt_path = None
model_cls = None
torch_dtype = torch.bfloat16
expected_memory_use_in_gb = 5
def test_gguf_parameters(self):
quant_storage_type = torch.uint8
quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)
for param_name, param in model.named_parameters():
if isinstance(param, GGUFParameter):
assert hasattr(param, "quant_type")
assert param.dtype == quant_storage_type
def test_gguf_linear_layers(self):
quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear) and hasattr(module.weight, "quant_type"):
assert module.weight.dtype == torch.uint8
if module.bias is not None:
assert module.bias.dtype == torch.float32
def test_gguf_memory_usage(self):
quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
model = self.model_cls.from_single_file(
self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
)
model.to("cuda")
assert (model.get_memory_footprint() / 1024**3) < self.expected_memory_use_in_gb
inputs = self.get_dummy_inputs()
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache()
with torch.no_grad():
model(**inputs)
max_memory = torch.cuda.max_memory_allocated()
assert (max_memory / 1024**3) < self.expected_memory_use_in_gb
def test_keep_modules_in_fp32(self):
r"""
A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32.
Also ensures if inference works.
"""
_keep_in_fp32_modules = self.model_cls._keep_in_fp32_modules
self.model_cls._keep_in_fp32_modules = ["proj_out"]
quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
if name in model._keep_in_fp32_modules:
assert module.weight.dtype == torch.float32
self.model_cls._keep_in_fp32_modules = _keep_in_fp32_modules
def test_dtype_assignment(self):
quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)
with self.assertRaises(ValueError):
# Tries with a `dtype`
model.to(torch.float16)
with self.assertRaises(ValueError):
# Tries with a `device` and `dtype`
model.to(device="cuda:0", dtype=torch.float16)
with self.assertRaises(ValueError):
# Tries with a cast
model.float()
with self.assertRaises(ValueError):
# Tries with a cast
model.half()
# This should work
model.to("cuda")
def test_dequantize_model(self):
quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)
model.dequantize()
def _check_for_gguf_linear(model):
has_children = list(model.children())
if not has_children:
return
for name, module in model.named_children():
if isinstance(module, nn.Linear):
assert not isinstance(module, GGUFLinear), f"{name} is still GGUFLinear"
assert not isinstance(module.weight, GGUFParameter), f"{name} weight is still GGUFParameter"
for name, module in model.named_children():
_check_for_gguf_linear(module)
class FluxGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
torch_dtype = torch.bfloat16
model_cls = FluxTransformer2DModel
expected_memory_use_in_gb = 5
def setUp(self):
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
def get_dummy_inputs(self):
return {
"hidden_states": torch.randn((1, 4096, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
torch_device, self.torch_dtype
),
"encoder_hidden_states": torch.randn(
(1, 512, 4096),
generator=torch.Generator("cpu").manual_seed(0),
).to(torch_device, self.torch_dtype),
"pooled_projections": torch.randn(
(1, 768),
generator=torch.Generator("cpu").manual_seed(0),
).to(torch_device, self.torch_dtype),
"timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
"img_ids": torch.randn((4096, 3), generator=torch.Generator("cpu").manual_seed(0)).to(
torch_device, self.torch_dtype
),
"txt_ids": torch.randn((512, 3), generator=torch.Generator("cpu").manual_seed(0)).to(
torch_device, self.torch_dtype
),
"guidance": torch.tensor([3.5]).to(torch_device, self.torch_dtype),
}
def test_pipeline_inference(self):
quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
transformer = self.model_cls.from_single_file(
self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=self.torch_dtype
)
pipe.enable_model_cpu_offload()
prompt = "a cat holding a sign that says hello"
output = pipe(
prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
).images[0]
output_slice = output[:3, :3, :].flatten()
expected_slice = np.array(
[
0.47265625,
0.43359375,
0.359375,
0.47070312,
0.421875,
0.34375,
0.46875,
0.421875,
0.34765625,
0.46484375,
0.421875,
0.34179688,
0.47070312,
0.42578125,
0.34570312,
0.46875,
0.42578125,
0.3515625,
0.45507812,
0.4140625,
0.33984375,
0.4609375,
0.41796875,
0.34375,
0.45898438,
0.41796875,
0.34375,
]
)
max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
assert max_diff < 1e-4
class SD35LargeGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
ckpt_path = "https://huggingface.co/city96/stable-diffusion-3.5-large-gguf/blob/main/sd3.5_large-Q4_0.gguf"
torch_dtype = torch.bfloat16
model_cls = SD3Transformer2DModel
expected_memory_use_in_gb = 5
def setUp(self):
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
def get_dummy_inputs(self):
return {
"hidden_states": torch.randn((1, 16, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
torch_device, self.torch_dtype
),
"encoder_hidden_states": torch.randn(
(1, 512, 4096),
generator=torch.Generator("cpu").manual_seed(0),
).to(torch_device, self.torch_dtype),
"pooled_projections": torch.randn(
(1, 2048),
generator=torch.Generator("cpu").manual_seed(0),
).to(torch_device, self.torch_dtype),
"timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
}
def test_pipeline_inference(self):
quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
transformer = self.model_cls.from_single_file(
self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
)
pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3.5-large", transformer=transformer, torch_dtype=self.torch_dtype
)
pipe.enable_model_cpu_offload()
prompt = "a cat holding a sign that says hello"
output = pipe(
prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
).images[0]
output_slice = output[:3, :3, :].flatten()
expected_slice = np.array(
[
0.17578125,
0.27539062,
0.27734375,
0.11914062,
0.26953125,
0.25390625,
0.109375,
0.25390625,
0.25,
0.15039062,
0.26171875,
0.28515625,
0.13671875,
0.27734375,
0.28515625,
0.12109375,
0.26757812,
0.265625,
0.16210938,
0.29882812,
0.28515625,
0.15625,
0.30664062,
0.27734375,
0.14648438,
0.29296875,
0.26953125,
]
)
max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
assert max_diff < 1e-4
class SD35MediumGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
ckpt_path = "https://huggingface.co/city96/stable-diffusion-3.5-medium-gguf/blob/main/sd3.5_medium-Q3_K_M.gguf"
torch_dtype = torch.bfloat16
model_cls = SD3Transformer2DModel
expected_memory_use_in_gb = 2
def setUp(self):
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
def get_dummy_inputs(self):
return {
"hidden_states": torch.randn((1, 16, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
torch_device, self.torch_dtype
),
"encoder_hidden_states": torch.randn(
(1, 512, 4096),
generator=torch.Generator("cpu").manual_seed(0),
).to(torch_device, self.torch_dtype),
"pooled_projections": torch.randn(
(1, 2048),
generator=torch.Generator("cpu").manual_seed(0),
).to(torch_device, self.torch_dtype),
"timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
}
def test_pipeline_inference(self):
quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
transformer = self.model_cls.from_single_file(
self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
)
pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3.5-medium", transformer=transformer, torch_dtype=self.torch_dtype
)
pipe.enable_model_cpu_offload()
prompt = "a cat holding a sign that says hello"
output = pipe(
prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
).images[0]
output_slice = output[:3, :3, :].flatten()
expected_slice = np.array(
[
0.625,
0.6171875,
0.609375,
0.65625,
0.65234375,
0.640625,
0.6484375,
0.640625,
0.625,
0.6484375,
0.63671875,
0.6484375,
0.66796875,
0.65625,
0.65234375,
0.6640625,
0.6484375,
0.6328125,
0.6640625,
0.6484375,
0.640625,
0.67578125,
0.66015625,
0.62109375,
0.671875,
0.65625,
0.62109375,
]
)
max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
assert max_diff < 1e-4
class AuraFlowGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
ckpt_path = "https://huggingface.co/city96/AuraFlow-v0.3-gguf/blob/main/aura_flow_0.3-Q2_K.gguf"
torch_dtype = torch.bfloat16
model_cls = AuraFlowTransformer2DModel
expected_memory_use_in_gb = 4
def setUp(self):
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
def get_dummy_inputs(self):
return {
"hidden_states": torch.randn((1, 4, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
torch_device, self.torch_dtype
),
"encoder_hidden_states": torch.randn(
(1, 512, 2048),
generator=torch.Generator("cpu").manual_seed(0),
).to(torch_device, self.torch_dtype),
"timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
}
def test_pipeline_inference(self):
quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
transformer = self.model_cls.from_single_file(
self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
)
pipe = AuraFlowPipeline.from_pretrained(
"fal/AuraFlow-v0.3", transformer=transformer, torch_dtype=self.torch_dtype
)
pipe.enable_model_cpu_offload()
prompt = "a pony holding a sign that says hello"
output = pipe(
prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
).images[0]
output_slice = output[:3, :3, :].flatten()
expected_slice = np.array(
[
0.46484375,
0.546875,
0.64453125,
0.48242188,
0.53515625,
0.59765625,
0.47070312,
0.5078125,
0.5703125,
0.42773438,
0.50390625,
0.5703125,
0.47070312,
0.515625,
0.57421875,
0.45898438,
0.48632812,
0.53515625,
0.4453125,
0.5078125,
0.56640625,
0.47851562,
0.5234375,
0.57421875,
0.48632812,
0.5234375,
0.56640625,
]
)
max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
assert max_diff < 1e-4