Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer | |
from diffusers import DDPMWuerstchenScheduler, StableCascadeCombinedPipeline | |
from diffusers.models import StableCascadeUNet | |
from diffusers.pipelines.wuerstchen import PaellaVQModel | |
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class StableCascadeCombinedPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = StableCascadeCombinedPipeline | |
params = ["prompt"] | |
batch_params = ["prompt", "negative_prompt"] | |
required_optional_params = [ | |
"generator", | |
"height", | |
"width", | |
"latents", | |
"prior_guidance_scale", | |
"decoder_guidance_scale", | |
"negative_prompt", | |
"num_inference_steps", | |
"return_dict", | |
"prior_num_inference_steps", | |
"output_type", | |
] | |
test_xformers_attention = True | |
def text_embedder_hidden_size(self): | |
return 32 | |
def dummy_prior(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"conditioning_dim": 128, | |
"block_out_channels": (128, 128), | |
"num_attention_heads": (2, 2), | |
"down_num_layers_per_block": (1, 1), | |
"up_num_layers_per_block": (1, 1), | |
"clip_image_in_channels": 768, | |
"switch_level": (False,), | |
"clip_text_in_channels": self.text_embedder_hidden_size, | |
"clip_text_pooled_in_channels": self.text_embedder_hidden_size, | |
} | |
model = StableCascadeUNet(**model_kwargs) | |
return model.eval() | |
def dummy_tokenizer(self): | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
return tokenizer | |
def dummy_text_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
projection_dim=self.text_embedder_hidden_size, | |
hidden_size=self.text_embedder_hidden_size, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
return CLIPTextModelWithProjection(config).eval() | |
def dummy_vqgan(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"bottleneck_blocks": 1, | |
"num_vq_embeddings": 2, | |
} | |
model = PaellaVQModel(**model_kwargs) | |
return model.eval() | |
def dummy_decoder(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"in_channels": 4, | |
"out_channels": 4, | |
"conditioning_dim": 128, | |
"block_out_channels": (16, 32, 64, 128), | |
"num_attention_heads": (-1, -1, 1, 2), | |
"down_num_layers_per_block": (1, 1, 1, 1), | |
"up_num_layers_per_block": (1, 1, 1, 1), | |
"down_blocks_repeat_mappers": (1, 1, 1, 1), | |
"up_blocks_repeat_mappers": (3, 3, 2, 2), | |
"block_types_per_layer": ( | |
("SDCascadeResBlock", "SDCascadeTimestepBlock"), | |
("SDCascadeResBlock", "SDCascadeTimestepBlock"), | |
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), | |
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), | |
), | |
"switch_level": None, | |
"clip_text_pooled_in_channels": 32, | |
"dropout": (0.1, 0.1, 0.1, 0.1), | |
} | |
model = StableCascadeUNet(**model_kwargs) | |
return model.eval() | |
def get_dummy_components(self): | |
prior = self.dummy_prior | |
scheduler = DDPMWuerstchenScheduler() | |
tokenizer = self.dummy_tokenizer | |
text_encoder = self.dummy_text_encoder | |
decoder = self.dummy_decoder | |
vqgan = self.dummy_vqgan | |
prior_text_encoder = self.dummy_text_encoder | |
prior_tokenizer = self.dummy_tokenizer | |
components = { | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"decoder": decoder, | |
"scheduler": scheduler, | |
"vqgan": vqgan, | |
"prior_text_encoder": prior_text_encoder, | |
"prior_tokenizer": prior_tokenizer, | |
"prior_prior": prior, | |
"prior_scheduler": scheduler, | |
"prior_feature_extractor": None, | |
"prior_image_encoder": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "horse", | |
"generator": generator, | |
"prior_guidance_scale": 4.0, | |
"decoder_guidance_scale": 4.0, | |
"num_inference_steps": 2, | |
"prior_num_inference_steps": 2, | |
"output_type": "np", | |
"height": 128, | |
"width": 128, | |
} | |
return inputs | |
def test_stable_cascade(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
output = pipe(**self.get_dummy_inputs(device)) | |
image = output.images | |
image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[-3:, -3:, -1] | |
assert image.shape == (1, 128, 128, 3) | |
expected_slice = np.array([0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0]) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" | |
assert ( | |
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" | |
def test_offloads(self): | |
pipes = [] | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components).to(torch_device) | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe.enable_sequential_cpu_offload() | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe.enable_model_cpu_offload() | |
pipes.append(sd_pipe) | |
image_slices = [] | |
for pipe in pipes: | |
inputs = self.get_dummy_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=2e-2) | |
def test_float16_inference(self): | |
super().test_float16_inference() | |
def test_callback_inputs(self): | |
super().test_callback_inputs() | |
def test_stable_cascade_combined_prompt_embeds(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = StableCascadeCombinedPipeline(**components) | |
pipe.set_progress_bar_config(disable=None) | |
prompt = "A photograph of a shiba inu, wearing a hat" | |
( | |
prompt_embeds, | |
prompt_embeds_pooled, | |
negative_prompt_embeds, | |
negative_prompt_embeds_pooled, | |
) = pipe.prior_pipe.encode_prompt(device, 1, 1, False, prompt=prompt) | |
generator = torch.Generator(device=device) | |
output_prompt = pipe( | |
prompt=prompt, | |
num_inference_steps=1, | |
prior_num_inference_steps=1, | |
output_type="np", | |
generator=generator.manual_seed(0), | |
) | |
output_prompt_embeds = pipe( | |
prompt=None, | |
prompt_embeds=prompt_embeds, | |
prompt_embeds_pooled=prompt_embeds_pooled, | |
negative_prompt_embeds=negative_prompt_embeds, | |
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, | |
num_inference_steps=1, | |
prior_num_inference_steps=1, | |
output_type="np", | |
generator=generator.manual_seed(0), | |
) | |
assert np.abs(output_prompt.images - output_prompt_embeds.images).max() < 1e-5 | |