Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import ( | |
T5EncoderModel, | |
T5Tokenizer, | |
) | |
from diffusers import ( | |
AutoencoderOobleck, | |
CosineDPMSolverMultistepScheduler, | |
StableAudioDiTModel, | |
StableAudioPipeline, | |
StableAudioProjectionModel, | |
) | |
from diffusers.utils import is_xformers_available | |
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device | |
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class StableAudioPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = StableAudioPipeline | |
params = frozenset( | |
[ | |
"prompt", | |
"audio_end_in_s", | |
"audio_start_in_s", | |
"guidance_scale", | |
"negative_prompt", | |
"prompt_embeds", | |
"negative_prompt_embeds", | |
"initial_audio_waveforms", | |
] | |
) | |
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"num_waveforms_per_prompt", | |
"generator", | |
"latents", | |
"output_type", | |
"return_dict", | |
"callback", | |
"callback_steps", | |
] | |
) | |
# There is not xformers version of the StableAudioPipeline custom attention processor | |
test_xformers_attention = False | |
supports_dduf = False | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = StableAudioDiTModel( | |
sample_size=4, | |
in_channels=3, | |
num_layers=2, | |
attention_head_dim=4, | |
num_key_value_attention_heads=2, | |
out_channels=3, | |
cross_attention_dim=4, | |
time_proj_dim=8, | |
global_states_input_dim=8, | |
cross_attention_input_dim=4, | |
) | |
scheduler = CosineDPMSolverMultistepScheduler( | |
solver_order=2, | |
prediction_type="v_prediction", | |
sigma_data=1.0, | |
sigma_schedule="exponential", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderOobleck( | |
encoder_hidden_size=6, | |
downsampling_ratios=[1, 2], | |
decoder_channels=3, | |
decoder_input_channels=3, | |
audio_channels=2, | |
channel_multiples=[2, 4], | |
sampling_rate=4, | |
) | |
torch.manual_seed(0) | |
t5_repo_id = "hf-internal-testing/tiny-random-T5ForConditionalGeneration" | |
text_encoder = T5EncoderModel.from_pretrained(t5_repo_id) | |
tokenizer = T5Tokenizer.from_pretrained(t5_repo_id, truncation=True, model_max_length=25) | |
torch.manual_seed(0) | |
projection_model = StableAudioProjectionModel( | |
text_encoder_dim=text_encoder.config.d_model, | |
conditioning_dim=4, | |
min_value=0, | |
max_value=32, | |
) | |
components = { | |
"transformer": transformer, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"projection_model": projection_model, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A hammer hitting a wooden surface", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
} | |
return inputs | |
def test_save_load_local(self): | |
# increase tolerance from 1e-4 -> 7e-3 to account for large composite model | |
super().test_save_load_local(expected_max_difference=7e-3) | |
def test_save_load_optional_components(self): | |
# increase tolerance from 1e-4 -> 7e-3 to account for large composite model | |
super().test_save_load_optional_components(expected_max_difference=7e-3) | |
def test_stable_audio_ddim(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
stable_audio_pipe = StableAudioPipeline(**components) | |
stable_audio_pipe = stable_audio_pipe.to(torch_device) | |
stable_audio_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = stable_audio_pipe(**inputs) | |
audio = output.audios[0] | |
assert audio.ndim == 2 | |
assert audio.shape == (2, 7) | |
def test_stable_audio_without_prompts(self): | |
components = self.get_dummy_components() | |
stable_audio_pipe = StableAudioPipeline(**components) | |
stable_audio_pipe = stable_audio_pipe.to(torch_device) | |
stable_audio_pipe = stable_audio_pipe.to(torch_device) | |
stable_audio_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["prompt"] = 3 * [inputs["prompt"]] | |
# forward | |
output = stable_audio_pipe(**inputs) | |
audio_1 = output.audios[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = 3 * [inputs.pop("prompt")] | |
text_inputs = stable_audio_pipe.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=stable_audio_pipe.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
).to(torch_device) | |
text_input_ids = text_inputs.input_ids | |
attention_mask = text_inputs.attention_mask | |
prompt_embeds = stable_audio_pipe.text_encoder( | |
text_input_ids, | |
attention_mask=attention_mask, | |
)[0] | |
inputs["prompt_embeds"] = prompt_embeds | |
inputs["attention_mask"] = attention_mask | |
# forward | |
output = stable_audio_pipe(**inputs) | |
audio_2 = output.audios[0] | |
assert (audio_1 - audio_2).abs().max() < 1e-2 | |
def test_stable_audio_negative_without_prompts(self): | |
components = self.get_dummy_components() | |
stable_audio_pipe = StableAudioPipeline(**components) | |
stable_audio_pipe = stable_audio_pipe.to(torch_device) | |
stable_audio_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
negative_prompt = 3 * ["this is a negative prompt"] | |
inputs["negative_prompt"] = negative_prompt | |
inputs["prompt"] = 3 * [inputs["prompt"]] | |
# forward | |
output = stable_audio_pipe(**inputs) | |
audio_1 = output.audios[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = 3 * [inputs.pop("prompt")] | |
text_inputs = stable_audio_pipe.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=stable_audio_pipe.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
).to(torch_device) | |
text_input_ids = text_inputs.input_ids | |
attention_mask = text_inputs.attention_mask | |
prompt_embeds = stable_audio_pipe.text_encoder( | |
text_input_ids, | |
attention_mask=attention_mask, | |
)[0] | |
inputs["prompt_embeds"] = prompt_embeds | |
inputs["attention_mask"] = attention_mask | |
negative_text_inputs = stable_audio_pipe.tokenizer( | |
negative_prompt, | |
padding="max_length", | |
max_length=stable_audio_pipe.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
).to(torch_device) | |
negative_text_input_ids = negative_text_inputs.input_ids | |
negative_attention_mask = negative_text_inputs.attention_mask | |
negative_prompt_embeds = stable_audio_pipe.text_encoder( | |
negative_text_input_ids, | |
attention_mask=negative_attention_mask, | |
)[0] | |
inputs["negative_prompt_embeds"] = negative_prompt_embeds | |
inputs["negative_attention_mask"] = negative_attention_mask | |
# forward | |
output = stable_audio_pipe(**inputs) | |
audio_2 = output.audios[0] | |
assert (audio_1 - audio_2).abs().max() < 1e-2 | |
def test_stable_audio_negative_prompt(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
stable_audio_pipe = StableAudioPipeline(**components) | |
stable_audio_pipe = stable_audio_pipe.to(device) | |
stable_audio_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
negative_prompt = "egg cracking" | |
output = stable_audio_pipe(**inputs, negative_prompt=negative_prompt) | |
audio = output.audios[0] | |
assert audio.ndim == 2 | |
assert audio.shape == (2, 7) | |
def test_stable_audio_num_waveforms_per_prompt(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
stable_audio_pipe = StableAudioPipeline(**components) | |
stable_audio_pipe = stable_audio_pipe.to(device) | |
stable_audio_pipe.set_progress_bar_config(disable=None) | |
prompt = "A hammer hitting a wooden surface" | |
# test num_waveforms_per_prompt=1 (default) | |
audios = stable_audio_pipe(prompt, num_inference_steps=2).audios | |
assert audios.shape == (1, 2, 7) | |
# test num_waveforms_per_prompt=1 (default) for batch of prompts | |
batch_size = 2 | |
audios = stable_audio_pipe([prompt] * batch_size, num_inference_steps=2).audios | |
assert audios.shape == (batch_size, 2, 7) | |
# test num_waveforms_per_prompt for single prompt | |
num_waveforms_per_prompt = 2 | |
audios = stable_audio_pipe( | |
prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt | |
).audios | |
assert audios.shape == (num_waveforms_per_prompt, 2, 7) | |
# test num_waveforms_per_prompt for batch of prompts | |
batch_size = 2 | |
audios = stable_audio_pipe( | |
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt | |
).audios | |
assert audios.shape == (batch_size * num_waveforms_per_prompt, 2, 7) | |
def test_stable_audio_audio_end_in_s(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
stable_audio_pipe = StableAudioPipeline(**components) | |
stable_audio_pipe = stable_audio_pipe.to(torch_device) | |
stable_audio_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = stable_audio_pipe(audio_end_in_s=1.5, **inputs) | |
audio = output.audios[0] | |
assert audio.ndim == 2 | |
assert audio.shape[1] / stable_audio_pipe.vae.sampling_rate == 1.5 | |
output = stable_audio_pipe(audio_end_in_s=1.1875, **inputs) | |
audio = output.audios[0] | |
assert audio.ndim == 2 | |
assert audio.shape[1] / stable_audio_pipe.vae.sampling_rate == 1.0 | |
def test_attention_slicing_forward_pass(self): | |
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(expected_max_diff=5e-4) | |
def test_xformers_attention_forwardGenerator_pass(self): | |
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False) | |
def test_stable_audio_input_waveform(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
stable_audio_pipe = StableAudioPipeline(**components) | |
stable_audio_pipe = stable_audio_pipe.to(device) | |
stable_audio_pipe.set_progress_bar_config(disable=None) | |
prompt = "A hammer hitting a wooden surface" | |
initial_audio_waveforms = torch.ones((1, 5)) | |
# test raises error when no sampling rate | |
with self.assertRaises(ValueError): | |
audios = stable_audio_pipe( | |
prompt, num_inference_steps=2, initial_audio_waveforms=initial_audio_waveforms | |
).audios | |
# test raises error when wrong sampling rate | |
with self.assertRaises(ValueError): | |
audios = stable_audio_pipe( | |
prompt, | |
num_inference_steps=2, | |
initial_audio_waveforms=initial_audio_waveforms, | |
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate - 1, | |
).audios | |
audios = stable_audio_pipe( | |
prompt, | |
num_inference_steps=2, | |
initial_audio_waveforms=initial_audio_waveforms, | |
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate, | |
).audios | |
assert audios.shape == (1, 2, 7) | |
# test works with num_waveforms_per_prompt | |
num_waveforms_per_prompt = 2 | |
audios = stable_audio_pipe( | |
prompt, | |
num_inference_steps=2, | |
num_waveforms_per_prompt=num_waveforms_per_prompt, | |
initial_audio_waveforms=initial_audio_waveforms, | |
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate, | |
).audios | |
assert audios.shape == (num_waveforms_per_prompt, 2, 7) | |
# test num_waveforms_per_prompt for batch of prompts and input audio (two channels) | |
batch_size = 2 | |
initial_audio_waveforms = torch.ones((batch_size, 2, 5)) | |
audios = stable_audio_pipe( | |
[prompt] * batch_size, | |
num_inference_steps=2, | |
num_waveforms_per_prompt=num_waveforms_per_prompt, | |
initial_audio_waveforms=initial_audio_waveforms, | |
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate, | |
).audios | |
assert audios.shape == (batch_size * num_waveforms_per_prompt, 2, 7) | |
def test_sequential_cpu_offload_forward_pass(self): | |
pass | |
def test_sequential_offload_forward_pass_twice(self): | |
pass | |
class StableAudioPipelineIntegrationTests(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
latents = np.random.RandomState(seed).standard_normal((1, 64, 1024)) | |
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) | |
inputs = { | |
"prompt": "A hammer hitting a wooden surface", | |
"latents": latents, | |
"generator": generator, | |
"num_inference_steps": 3, | |
"audio_end_in_s": 30, | |
"guidance_scale": 2.5, | |
} | |
return inputs | |
def test_stable_audio(self): | |
stable_audio_pipe = StableAudioPipeline.from_pretrained("stabilityai/stable-audio-open-1.0") | |
stable_audio_pipe = stable_audio_pipe.to(torch_device) | |
stable_audio_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
inputs["num_inference_steps"] = 25 | |
audio = stable_audio_pipe(**inputs).audios[0] | |
assert audio.ndim == 2 | |
assert audio.shape == (2, int(inputs["audio_end_in_s"] * stable_audio_pipe.vae.sampling_rate)) | |
# check the portion of the generated audio with the largest dynamic range (reduces flakiness) | |
audio_slice = audio[0, 447590:447600] | |
# fmt: off | |
expected_slice = np.array( | |
[-0.0278, 0.1096, 0.1877, 0.3178, 0.5329, 0.6990, 0.6972, 0.6186, 0.5608, 0.5060] | |
) | |
# fmt: one | |
max_diff = np.abs(expected_slice - audio_slice.detach().cpu().numpy()).max() | |
assert max_diff < 1.5e-3 | |