theSure's picture
Upload 2037 files
a49cc2f verified
# Copyright 2024 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import unittest
import numpy as np
import torch
from transformers import Gemma2Config, Gemma2ForCausalLM, GemmaTokenizer
from diffusers import (
AutoencoderDC,
FlowMatchEulerDiscreteScheduler,
SanaPAGPipeline,
SanaPipeline,
SanaTransformer2DModel,
)
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np
enable_full_determinism()
class SanaPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = SanaPAGPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
transformer = SanaTransformer2DModel(
patch_size=1,
in_channels=4,
out_channels=4,
num_layers=2,
num_attention_heads=2,
attention_head_dim=4,
num_cross_attention_heads=2,
cross_attention_head_dim=4,
cross_attention_dim=8,
caption_channels=8,
sample_size=32,
)
torch.manual_seed(0)
vae = AutoencoderDC(
in_channels=3,
latent_channels=4,
attention_head_dim=2,
encoder_block_types=(
"ResBlock",
"EfficientViTBlock",
),
decoder_block_types=(
"ResBlock",
"EfficientViTBlock",
),
encoder_block_out_channels=(8, 8),
decoder_block_out_channels=(8, 8),
encoder_qkv_multiscales=((), (5,)),
decoder_qkv_multiscales=((), (5,)),
encoder_layers_per_block=(1, 1),
decoder_layers_per_block=[1, 1],
downsample_block_type="conv",
upsample_block_type="interpolate",
decoder_norm_types="rms_norm",
decoder_act_fns="silu",
scaling_factor=0.41407,
)
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
torch.manual_seed(0)
text_encoder_config = Gemma2Config(
head_dim=16,
hidden_size=32,
initializer_range=0.02,
intermediate_size=64,
max_position_embeddings=8192,
model_type="gemma2",
num_attention_heads=2,
num_hidden_layers=1,
num_key_value_heads=2,
vocab_size=8,
attn_implementation="eager",
)
text_encoder = Gemma2ForCausalLM(text_encoder_config)
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "",
"negative_prompt": "",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"pag_scale": 3.0,
"height": 32,
"width": 32,
"max_sequence_length": 16,
"output_type": "pt",
"complex_human_instruction": None,
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs)[0]
generated_image = image[0]
self.assertEqual(generated_image.shape, (3, 32, 32))
expected_image = torch.randn(3, 32, 32)
max_diff = np.abs(generated_image - expected_image).max()
self.assertLessEqual(max_diff, 1e10)
def test_callback_inputs(self):
sig = inspect.signature(self.pipeline_class.__call__)
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
has_callback_step_end = "callback_on_step_end" in sig.parameters
if not (has_callback_tensor_inputs and has_callback_step_end):
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
self.assertTrue(
hasattr(pipe, "_callback_tensor_inputs"),
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
)
def callback_inputs_subset(pipe, i, t, callback_kwargs):
# iterate over callback args
for tensor_name, tensor_value in callback_kwargs.items():
# check that we're only passing in allowed tensor inputs
assert tensor_name in pipe._callback_tensor_inputs
return callback_kwargs
def callback_inputs_all(pipe, i, t, callback_kwargs):
for tensor_name in pipe._callback_tensor_inputs:
assert tensor_name in callback_kwargs
# iterate over callback args
for tensor_name, tensor_value in callback_kwargs.items():
# check that we're only passing in allowed tensor inputs
assert tensor_name in pipe._callback_tensor_inputs
return callback_kwargs
inputs = self.get_dummy_inputs(torch_device)
# Test passing in a subset
inputs["callback_on_step_end"] = callback_inputs_subset
inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
output = pipe(**inputs)[0]
# Test passing in a everything
inputs["callback_on_step_end"] = callback_inputs_all
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
output = pipe(**inputs)[0]
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
is_last = i == (pipe.num_timesteps - 1)
if is_last:
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
return callback_kwargs
inputs["callback_on_step_end"] = callback_inputs_change_tensor
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
output = pipe(**inputs)[0]
assert output.abs().sum() < 1e10
def test_attention_slicing_forward_pass(
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
):
if not self.test_attention_slicing:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
output_without_slicing = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=1)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing1 = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=2)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing2 = pipe(**inputs)[0]
if test_max_difference:
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
self.assertLess(
max(max_diff1, max_diff2),
expected_max_diff,
"Attention slicing should not affect the inference results",
)
def test_pag_disable_enable(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
# base pipeline (expect same output when pag is disabled)
pipe_sd = SanaPipeline(**components)
pipe_sd = pipe_sd.to(device)
pipe_sd.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
del inputs["pag_scale"]
assert (
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}."
out = pipe_sd(**inputs).images[0, -3:, -3:, -1]
components = self.get_dummy_components()
# pag disabled with pag_scale=0.0
pipe_pag = self.pipeline_class(**components)
pipe_pag = pipe_pag.to(device)
pipe_pag.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["pag_scale"] = 0.0
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3
def test_pag_applied_layers(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
# base pipeline
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
all_self_attn_layers = [k for k in pipe.transformer.attn_processors.keys() if "attn1" in k]
original_attn_procs = pipe.transformer.attn_processors
pag_layers = ["blocks.0", "blocks.1"]
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers)
# blocks.0
block_0_self_attn = ["transformer_blocks.0.attn1.processor"]
pipe.transformer.set_attn_processor(original_attn_procs.copy())
pag_layers = ["blocks.0"]
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
assert set(pipe.pag_attn_processors) == set(block_0_self_attn)
pipe.transformer.set_attn_processor(original_attn_procs.copy())
pag_layers = ["blocks.0.attn1"]
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
assert set(pipe.pag_attn_processors) == set(block_0_self_attn)
pipe.transformer.set_attn_processor(original_attn_procs.copy())
pag_layers = ["blocks.(0|1)"]
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
assert (len(pipe.pag_attn_processors)) == 2
pipe.transformer.set_attn_processor(original_attn_procs.copy())
pag_layers = ["blocks.0", r"blocks\.1"]
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
assert len(pipe.pag_attn_processors) == 2
# TODO(aryan): Create a dummy gemma model with smol vocab size
@unittest.skip(
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
)
def test_inference_batch_consistent(self):
pass
@unittest.skip(
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
)
def test_inference_batch_single_identical(self):
pass
def test_float16_inference(self):
# Requires higher tolerance as model seems very sensitive to dtype
super().test_float16_inference(expected_max_diff=0.08)