Omnieraser / diffusers /tests /pipelines /flux /test_pipeline_flux_inpaint.py
theSure's picture
Upload 2037 files
a49cc2f verified
import random
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxInpaintPipeline, FluxTransformer2DModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class FluxInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = FluxInpaintPipeline
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
batch_params = frozenset(["prompt"])
test_xformers_attention = False
def get_dummy_components(self):
torch.manual_seed(0)
transformer = FluxTransformer2DModel(
patch_size=1,
in_channels=8,
num_layers=1,
num_single_layers=1,
attention_head_dim=16,
num_attention_heads=2,
joint_attention_dim=32,
pooled_projection_dim=32,
axes_dims_rope=[4, 4, 8],
)
clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=32,
)
torch.manual_seed(0)
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
vae = AutoencoderKL(
sample_size=32,
in_channels=3,
out_channels=3,
block_out_channels=(4,),
layers_per_block=1,
latent_channels=2,
norm_num_groups=1,
use_quant_conv=False,
use_post_quant_conv=False,
shift_factor=0.0609,
scaling_factor=1.5035,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"transformer": transformer,
"vae": vae,
}
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
mask_image = torch.ones((1, 1, 32, 32)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"height": 32,
"width": 32,
"max_sequence_length": 48,
"strength": 0.8,
"output_type": "np",
}
return inputs
def test_flux_inpaint_different_prompts(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
output_same_prompt = pipe(**inputs).images[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = "a different prompt"
output_different_prompts = pipe(**inputs).images[0]
max_diff = np.abs(output_same_prompt - output_different_prompts).max()
# Outputs should be different here
# For some reasons, they don't show large differences
assert max_diff > 1e-6
def test_flux_inpaint_prompt_embeds(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
output_with_prompt = pipe(**inputs).images[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs.pop("prompt")
(prompt_embeds, pooled_prompt_embeds, text_ids) = pipe.encode_prompt(
prompt,
prompt_2=None,
device=torch_device,
max_sequence_length=inputs["max_sequence_length"],
)
output_with_embeds = pipe(
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
**inputs,
).images[0]
max_diff = np.abs(output_with_prompt - output_with_embeds).max()
assert max_diff < 1e-4
def test_flux_image_output_shape(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
height_width_pairs = [(32, 32), (72, 57)]
for height, width in height_width_pairs:
expected_height = height - height % (pipe.vae_scale_factor * 2)
expected_width = width - width % (pipe.vae_scale_factor * 2)
inputs.update({"height": height, "width": width})
image = pipe(**inputs).images[0]
output_height, output_width, _ = image.shape
assert (output_height, output_width) == (expected_height, expected_width)