Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel | |
from diffusers import ( | |
AutoencoderKL, | |
FlowMatchEulerDiscreteScheduler, | |
SD3Transformer2DModel, | |
StableDiffusion3ControlNetInpaintingPipeline, | |
) | |
from diffusers.models import SD3ControlNetModel | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
torch_device, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class StableDiffusion3ControlInpaintNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
pipeline_class = StableDiffusion3ControlNetInpaintingPipeline | |
params = frozenset( | |
[ | |
"prompt", | |
"height", | |
"width", | |
"guidance_scale", | |
"negative_prompt", | |
"prompt_embeds", | |
"negative_prompt_embeds", | |
] | |
) | |
batch_params = frozenset(["prompt", "negative_prompt"]) | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = SD3Transformer2DModel( | |
sample_size=32, | |
patch_size=1, | |
in_channels=8, | |
num_layers=4, | |
attention_head_dim=8, | |
num_attention_heads=4, | |
joint_attention_dim=32, | |
caption_projection_dim=32, | |
pooled_projection_dim=64, | |
out_channels=8, | |
) | |
torch.manual_seed(0) | |
controlnet = SD3ControlNetModel( | |
sample_size=32, | |
patch_size=1, | |
in_channels=8, | |
num_layers=1, | |
attention_head_dim=8, | |
num_attention_heads=4, | |
joint_attention_dim=32, | |
caption_projection_dim=32, | |
pooled_projection_dim=64, | |
out_channels=8, | |
extra_conditioning_channels=1, | |
) | |
clip_text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
torch.manual_seed(0) | |
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) | |
torch.manual_seed(0) | |
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) | |
torch.manual_seed(0) | |
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
block_out_channels=(4,), | |
layers_per_block=1, | |
latent_channels=8, | |
norm_num_groups=1, | |
use_quant_conv=False, | |
use_post_quant_conv=False, | |
shift_factor=0.0609, | |
scaling_factor=1.5035, | |
) | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
return { | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"text_encoder_2": text_encoder_2, | |
"text_encoder_3": text_encoder_3, | |
"tokenizer": tokenizer, | |
"tokenizer_2": tokenizer_2, | |
"tokenizer_3": tokenizer_3, | |
"transformer": transformer, | |
"vae": vae, | |
"controlnet": controlnet, | |
"image_encoder": None, | |
"feature_extractor": None, | |
} | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
control_image = randn_tensor( | |
(1, 3, 32, 32), | |
generator=generator, | |
device=torch.device(device), | |
dtype=torch.float16, | |
) | |
control_mask = randn_tensor( | |
(1, 1, 32, 32), | |
generator=generator, | |
device=torch.device(device), | |
dtype=torch.float16, | |
) | |
controlnet_conditioning_scale = 0.95 | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 7.0, | |
"output_type": "np", | |
"control_image": control_image, | |
"control_mask": control_mask, | |
"controlnet_conditioning_scale": controlnet_conditioning_scale, | |
} | |
return inputs | |
def test_controlnet_inpaint_sd3(self): | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusion3ControlNetInpaintingPipeline(**components) | |
sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output = sd_pipe(**inputs) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 32, 32, 3) | |
expected_slice = np.array( | |
[0.51708984, 0.7421875, 0.4580078, 0.6435547, 0.65625, 0.43603516, 0.5151367, 0.65722656, 0.60839844] | |
) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
), f"Expected: {expected_slice}, got: {image_slice.flatten()}" | |
def test_xformers_attention_forwardGenerator_pass(self): | |
pass | |