Spaces:
Running
on
Zero
Running
on
Zero
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel | |
from diffusers import ( | |
AutoencoderKL, | |
FlowMatchEulerDiscreteScheduler, | |
FluxControlNetImg2ImgPipeline, | |
FluxControlNetModel, | |
FluxTransformer2DModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
torch_device, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from ..test_pipelines_common import ( | |
PipelineTesterMixin, | |
check_qkv_fusion_matches_attn_procs_length, | |
check_qkv_fusion_processors_exist, | |
) | |
class FluxControlNetImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
pipeline_class = FluxControlNetImg2ImgPipeline | |
params = frozenset( | |
[ | |
"prompt", | |
"image", | |
"control_image", | |
"height", | |
"width", | |
"strength", | |
"guidance_scale", | |
"controlnet_conditioning_scale", | |
"prompt_embeds", | |
"pooled_prompt_embeds", | |
] | |
) | |
batch_params = frozenset(["prompt", "image", "control_image"]) | |
test_xformers_attention = False | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = FluxTransformer2DModel( | |
patch_size=1, | |
in_channels=4, | |
num_layers=1, | |
num_single_layers=1, | |
attention_head_dim=16, | |
num_attention_heads=2, | |
joint_attention_dim=32, | |
pooled_projection_dim=32, | |
axes_dims_rope=[4, 4, 8], | |
) | |
clip_text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
torch.manual_seed(0) | |
text_encoder = CLIPTextModel(clip_text_encoder_config) | |
torch.manual_seed(0) | |
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
block_out_channels=(4,), | |
layers_per_block=1, | |
latent_channels=1, | |
norm_num_groups=1, | |
use_quant_conv=False, | |
use_post_quant_conv=False, | |
shift_factor=0.0609, | |
scaling_factor=1.5035, | |
) | |
torch.manual_seed(0) | |
controlnet = FluxControlNetModel( | |
in_channels=4, | |
num_layers=1, | |
num_single_layers=1, | |
attention_head_dim=16, | |
num_attention_heads=2, | |
joint_attention_dim=32, | |
pooled_projection_dim=32, | |
axes_dims_rope=[4, 4, 8], | |
) | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
return { | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer": tokenizer, | |
"tokenizer_2": tokenizer_2, | |
"transformer": transformer, | |
"vae": vae, | |
"controlnet": controlnet, | |
} | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
image = torch.randn(1, 3, 32, 32).to(device) | |
control_image = torch.randn(1, 3, 32, 32).to(device) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"image": image, | |
"control_image": control_image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"controlnet_conditioning_scale": 1.0, | |
"strength": 0.8, | |
"height": 32, | |
"width": 32, | |
"max_sequence_length": 48, | |
"output_type": "np", | |
} | |
return inputs | |
def test_flux_controlnet_different_prompts(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_same_prompt = pipe(**inputs).images[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["prompt_2"] = "a different prompt" | |
output_different_prompts = pipe(**inputs).images[0] | |
max_diff = np.abs(output_same_prompt - output_different_prompts).max() | |
assert max_diff > 1e-6 | |
def test_flux_controlnet_prompt_embeds(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_prompt = pipe(**inputs).images[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = inputs.pop("prompt") | |
(prompt_embeds, pooled_prompt_embeds, text_ids) = pipe.encode_prompt( | |
prompt, | |
prompt_2=None, | |
device=torch_device, | |
max_sequence_length=inputs["max_sequence_length"], | |
) | |
output_with_embeds = pipe( | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
**inputs, | |
).images[0] | |
max_diff = np.abs(output_with_prompt - output_with_embeds).max() | |
assert max_diff < 1e-4 | |
def test_fused_qkv_projections(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
original_image_slice = image[0, -3:, -3:, -1] | |
pipe.transformer.fuse_qkv_projections() | |
assert check_qkv_fusion_processors_exist( | |
pipe.transformer | |
), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." | |
assert check_qkv_fusion_matches_attn_procs_length( | |
pipe.transformer, pipe.transformer.original_attn_processors | |
), "Something wrong with the attention processors concerning the fused QKV projections." | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice_fused = image[0, -3:, -3:, -1] | |
pipe.transformer.unfuse_qkv_projections() | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice_disabled = image[0, -3:, -3:, -1] | |
assert np.allclose( | |
original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 | |
), "Fusion of QKV projections shouldn't affect the outputs." | |
assert np.allclose( | |
image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 | |
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." | |
assert np.allclose( | |
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 | |
), "Original outputs should match when fused QKV projections are disabled." | |
def test_flux_image_output_shape(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
height_width_pairs = [(32, 32), (72, 56)] | |
for height, width in height_width_pairs: | |
expected_height = height - height % (pipe.vae_scale_factor * 2) | |
expected_width = width - width % (pipe.vae_scale_factor * 2) | |
inputs.update( | |
{ | |
"control_image": randn_tensor( | |
(1, 3, height, width), | |
device=torch_device, | |
dtype=torch.float16, | |
), | |
"image": randn_tensor( | |
(1, 3, height, width), | |
device=torch_device, | |
dtype=torch.float16, | |
), | |
"height": height, | |
"width": width, | |
} | |
) | |
image = pipe(**inputs).images[0] | |
output_height, output_width, _ = image.shape | |
assert (output_height, output_width) == (expected_height, expected_width) | |