Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from diffusers import ConsistencyDecoderVAE, StableDiffusionPipeline | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
load_image, | |
slow, | |
torch_all_close, | |
torch_device, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from ..test_modeling_common import ModelTesterMixin | |
enable_full_determinism() | |
class ConsistencyDecoderVAETests(ModelTesterMixin, unittest.TestCase): | |
model_class = ConsistencyDecoderVAE | |
main_input_name = "sample" | |
base_precision = 1e-2 | |
forward_requires_fresh_args = True | |
def get_consistency_vae_config(self, block_out_channels=None, norm_num_groups=None): | |
block_out_channels = block_out_channels or [2, 4] | |
norm_num_groups = norm_num_groups or 2 | |
return { | |
"encoder_block_out_channels": block_out_channels, | |
"encoder_in_channels": 3, | |
"encoder_out_channels": 4, | |
"encoder_down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), | |
"decoder_add_attention": False, | |
"decoder_block_out_channels": block_out_channels, | |
"decoder_down_block_types": ["ResnetDownsampleBlock2D"] * len(block_out_channels), | |
"decoder_downsample_padding": 1, | |
"decoder_in_channels": 7, | |
"decoder_layers_per_block": 1, | |
"decoder_norm_eps": 1e-05, | |
"decoder_norm_num_groups": norm_num_groups, | |
"encoder_norm_num_groups": norm_num_groups, | |
"decoder_num_train_timesteps": 1024, | |
"decoder_out_channels": 6, | |
"decoder_resnet_time_scale_shift": "scale_shift", | |
"decoder_time_embedding_type": "learned", | |
"decoder_up_block_types": ["ResnetUpsampleBlock2D"] * len(block_out_channels), | |
"scaling_factor": 1, | |
"latent_channels": 4, | |
} | |
def inputs_dict(self, seed=None): | |
if seed is None: | |
generator = torch.Generator("cpu").manual_seed(0) | |
else: | |
generator = torch.Generator("cpu").manual_seed(seed) | |
image = randn_tensor((4, 3, 32, 32), generator=generator, device=torch.device(torch_device)) | |
return {"sample": image, "generator": generator} | |
def input_shape(self): | |
return (3, 32, 32) | |
def output_shape(self): | |
return (3, 32, 32) | |
def init_dict(self): | |
return self.get_consistency_vae_config() | |
def prepare_init_args_and_inputs_for_common(self): | |
return self.init_dict, self.inputs_dict() | |
def test_enable_disable_tiling(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict).to(torch_device) | |
inputs_dict.update({"return_dict": False}) | |
_ = inputs_dict.pop("generator") | |
torch.manual_seed(0) | |
output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
torch.manual_seed(0) | |
model.enable_tiling() | |
output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
self.assertLess( | |
(output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), | |
0.5, | |
"VAE tiling should not affect the inference results", | |
) | |
torch.manual_seed(0) | |
model.disable_tiling() | |
output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
self.assertEqual( | |
output_without_tiling.detach().cpu().numpy().all(), | |
output_without_tiling_2.detach().cpu().numpy().all(), | |
"Without tiling outputs should match with the outputs when tiling is manually disabled.", | |
) | |
def test_enable_disable_slicing(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict).to(torch_device) | |
inputs_dict.update({"return_dict": False}) | |
_ = inputs_dict.pop("generator") | |
torch.manual_seed(0) | |
output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
torch.manual_seed(0) | |
model.enable_slicing() | |
output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
self.assertLess( | |
(output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), | |
0.5, | |
"VAE slicing should not affect the inference results", | |
) | |
torch.manual_seed(0) | |
model.disable_slicing() | |
output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
self.assertEqual( | |
output_without_slicing.detach().cpu().numpy().all(), | |
output_without_slicing_2.detach().cpu().numpy().all(), | |
"Without slicing outputs should match with the outputs when slicing is manually disabled.", | |
) | |
class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase): | |
def setUp(self): | |
# clean up the VRAM before each test | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_encode_decode(self): | |
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") # TODO - update | |
vae.to(torch_device) | |
image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/img2img/sketch-mountains-input.jpg" | |
).resize((256, 256)) | |
image = torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :].to( | |
torch_device | |
) | |
latent = vae.encode(image).latent_dist.mean | |
sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample | |
actual_output = sample[0, :2, :2, :2].flatten().cpu() | |
expected_output = torch.tensor([-0.0141, -0.0014, 0.0115, 0.0086, 0.1051, 0.1053, 0.1031, 0.1024]) | |
assert torch_all_close(actual_output, expected_output, atol=5e-3) | |
def test_sd(self): | |
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") # TODO - update | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, safety_checker=None | |
) | |
pipe.to(torch_device) | |
out = pipe( | |
"horse", | |
num_inference_steps=2, | |
output_type="pt", | |
generator=torch.Generator("cpu").manual_seed(0), | |
).images[0] | |
actual_output = out[:2, :2, :2].flatten().cpu() | |
expected_output = torch.tensor([0.7686, 0.8228, 0.6489, 0.7455, 0.8661, 0.8797, 0.8241, 0.8759]) | |
assert torch_all_close(actual_output, expected_output, atol=5e-3) | |
def test_encode_decode_f16(self): | |
vae = ConsistencyDecoderVAE.from_pretrained( | |
"openai/consistency-decoder", torch_dtype=torch.float16 | |
) # TODO - update | |
vae.to(torch_device) | |
image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/img2img/sketch-mountains-input.jpg" | |
).resize((256, 256)) | |
image = ( | |
torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :] | |
.half() | |
.to(torch_device) | |
) | |
latent = vae.encode(image).latent_dist.mean | |
sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample | |
actual_output = sample[0, :2, :2, :2].flatten().cpu() | |
expected_output = torch.tensor( | |
[-0.0111, -0.0125, -0.0017, -0.0007, 0.1257, 0.1465, 0.1450, 0.1471], | |
dtype=torch.float16, | |
) | |
assert torch_all_close(actual_output, expected_output, atol=5e-3) | |
def test_sd_f16(self): | |
vae = ConsistencyDecoderVAE.from_pretrained( | |
"openai/consistency-decoder", torch_dtype=torch.float16 | |
) # TODO - update | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"stable-diffusion-v1-5/stable-diffusion-v1-5", | |
torch_dtype=torch.float16, | |
vae=vae, | |
safety_checker=None, | |
) | |
pipe.to(torch_device) | |
out = pipe( | |
"horse", | |
num_inference_steps=2, | |
output_type="pt", | |
generator=torch.Generator("cpu").manual_seed(0), | |
).images[0] | |
actual_output = out[:2, :2, :2].flatten().cpu() | |
expected_output = torch.tensor( | |
[0.0000, 0.0249, 0.0000, 0.0000, 0.1709, 0.2773, 0.0471, 0.1035], | |
dtype=torch.float16, | |
) | |
assert torch_all_close(actual_output, expected_output, atol=5e-3) | |
def test_vae_tiling(self): | |
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16) | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, safety_checker=None, torch_dtype=torch.float16 | |
) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
out_1 = pipe( | |
"horse", | |
num_inference_steps=2, | |
output_type="pt", | |
generator=torch.Generator("cpu").manual_seed(0), | |
).images[0] | |
# make sure tiled vae decode yields the same result | |
pipe.enable_vae_tiling() | |
out_2 = pipe( | |
"horse", | |
num_inference_steps=2, | |
output_type="pt", | |
generator=torch.Generator("cpu").manual_seed(0), | |
).images[0] | |
assert torch_all_close(out_1, out_2, atol=5e-3) | |
# test that tiled decode works with various shapes | |
shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)] | |
with torch.no_grad(): | |
for shape in shapes: | |
image = torch.zeros(shape, device=torch_device, dtype=pipe.vae.dtype) | |
pipe.vae.decode(image) | |