Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import torch | |
from datasets import load_dataset | |
from parameterized import parameterized | |
from diffusers import AutoencoderOobleck | |
from diffusers.utils.testing_utils import ( | |
backend_empty_cache, | |
enable_full_determinism, | |
floats_tensor, | |
slow, | |
torch_all_close, | |
torch_device, | |
) | |
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
enable_full_determinism() | |
class AutoencoderOobleckTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = AutoencoderOobleck | |
main_input_name = "sample" | |
base_precision = 1e-2 | |
def get_autoencoder_oobleck_config(self, block_out_channels=None): | |
init_dict = { | |
"encoder_hidden_size": 12, | |
"decoder_channels": 12, | |
"decoder_input_channels": 6, | |
"audio_channels": 2, | |
"downsampling_ratios": [2, 4], | |
"channel_multiples": [1, 2], | |
} | |
return init_dict | |
def dummy_input(self): | |
batch_size = 4 | |
num_channels = 2 | |
seq_len = 24 | |
waveform = floats_tensor((batch_size, num_channels, seq_len)).to(torch_device) | |
return {"sample": waveform, "sample_posterior": False} | |
def input_shape(self): | |
return (2, 24) | |
def output_shape(self): | |
return (2, 24) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = self.get_autoencoder_oobleck_config() | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_enable_disable_slicing(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
torch.manual_seed(0) | |
model = self.model_class(**init_dict).to(torch_device) | |
inputs_dict.update({"return_dict": False}) | |
torch.manual_seed(0) | |
output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
torch.manual_seed(0) | |
model.enable_slicing() | |
output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
self.assertLess( | |
(output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), | |
0.5, | |
"VAE slicing should not affect the inference results", | |
) | |
torch.manual_seed(0) | |
model.disable_slicing() | |
output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
self.assertEqual( | |
output_without_slicing.detach().cpu().numpy().all(), | |
output_without_slicing_2.detach().cpu().numpy().all(), | |
"Without slicing outputs should match with the outputs when slicing is manually disabled.", | |
) | |
def test_forward_with_norm_groups(self): | |
pass | |
def test_set_attn_processor_for_determinism(self): | |
return | |
def test_layerwise_casting_inference(self): | |
pass | |
def test_layerwise_casting_memory(self): | |
pass | |
class AutoencoderOobleckIntegrationTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def _load_datasamples(self, num_samples): | |
ds = load_dataset( | |
"hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True | |
) | |
# automatic decoding with librispeech | |
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] | |
return torch.nn.utils.rnn.pad_sequence( | |
[torch.from_numpy(x["array"]) for x in speech_samples], batch_first=True | |
) | |
def get_audio(self, audio_sample_size=2097152, fp16=False): | |
dtype = torch.float16 if fp16 else torch.float32 | |
audio = self._load_datasamples(2).to(torch_device).to(dtype) | |
# pad / crop to audio_sample_size | |
audio = torch.nn.functional.pad(audio[:, :audio_sample_size], pad=(0, audio_sample_size - audio.shape[-1])) | |
# todo channel | |
audio = audio.unsqueeze(1).repeat(1, 2, 1).to(torch_device) | |
return audio | |
def get_oobleck_vae_model(self, model_id="stabilityai/stable-audio-open-1.0", fp16=False): | |
torch_dtype = torch.float16 if fp16 else torch.float32 | |
model = AutoencoderOobleck.from_pretrained( | |
model_id, | |
subfolder="vae", | |
torch_dtype=torch_dtype, | |
) | |
model.to(torch_device) | |
return model | |
def get_generator(self, seed=0): | |
generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" | |
if torch_device != "mps": | |
return torch.Generator(device=generator_device).manual_seed(seed) | |
return torch.manual_seed(seed) | |
def test_stable_diffusion(self, seed, expected_slice, expected_mean_absolute_diff): | |
model = self.get_oobleck_vae_model() | |
audio = self.get_audio() | |
generator = self.get_generator(seed) | |
with torch.no_grad(): | |
sample = model(audio, generator=generator, sample_posterior=True).sample | |
assert sample.shape == audio.shape | |
assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6 | |
output_slice = sample[-1, 1, 5:10].cpu() | |
expected_output_slice = torch.tensor(expected_slice) | |
assert torch_all_close(output_slice, expected_output_slice, atol=1e-5) | |
def test_stable_diffusion_mode(self): | |
model = self.get_oobleck_vae_model() | |
audio = self.get_audio() | |
with torch.no_grad(): | |
sample = model(audio, sample_posterior=False).sample | |
assert sample.shape == audio.shape | |
def test_stable_diffusion_encode_decode(self, seed, expected_slice, expected_mean_absolute_diff): | |
model = self.get_oobleck_vae_model() | |
audio = self.get_audio() | |
generator = self.get_generator(seed) | |
with torch.no_grad(): | |
x = audio | |
posterior = model.encode(x).latent_dist | |
z = posterior.sample(generator=generator) | |
sample = model.decode(z).sample | |
# (batch_size, latent_dim, sequence_length) | |
assert posterior.mean.shape == (audio.shape[0], model.config.decoder_input_channels, 1024) | |
assert sample.shape == audio.shape | |
assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6 | |
output_slice = sample[-1, 1, 5:10].cpu() | |
expected_output_slice = torch.tensor(expected_slice) | |
assert torch_all_close(output_slice, expected_output_slice, atol=1e-5) | |