Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| from diffusers import AutoencoderDC | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| floats_tensor, | |
| torch_device, | |
| ) | |
| from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
| enable_full_determinism() | |
| class AutoencoderDCTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = AutoencoderDC | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| def get_autoencoder_dc_config(self): | |
| return { | |
| "in_channels": 3, | |
| "latent_channels": 4, | |
| "attention_head_dim": 2, | |
| "encoder_block_types": ( | |
| "ResBlock", | |
| "EfficientViTBlock", | |
| ), | |
| "decoder_block_types": ( | |
| "ResBlock", | |
| "EfficientViTBlock", | |
| ), | |
| "encoder_block_out_channels": (8, 8), | |
| "decoder_block_out_channels": (8, 8), | |
| "encoder_qkv_multiscales": ((), (5,)), | |
| "decoder_qkv_multiscales": ((), (5,)), | |
| "encoder_layers_per_block": (1, 1), | |
| "decoder_layers_per_block": [1, 1], | |
| "downsample_block_type": "conv", | |
| "upsample_block_type": "interpolate", | |
| "decoder_norm_types": "rms_norm", | |
| "decoder_act_fns": "silu", | |
| "scaling_factor": 0.41407, | |
| } | |
| def dummy_input(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| sizes = (32, 32) | |
| image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
| return {"sample": image} | |
| def input_shape(self): | |
| return (3, 32, 32) | |
| def output_shape(self): | |
| return (3, 32, 32) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = self.get_autoencoder_dc_config() | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def test_forward_with_norm_groups(self): | |
| pass | |