Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import torch | |
from parameterized import parameterized | |
from diffusers import AsymmetricAutoencoderKL | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.testing_utils import ( | |
backend_empty_cache, | |
enable_full_determinism, | |
floats_tensor, | |
load_hf_numpy, | |
require_torch_accelerator, | |
require_torch_gpu, | |
skip_mps, | |
slow, | |
torch_all_close, | |
torch_device, | |
) | |
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
enable_full_determinism() | |
class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = AsymmetricAutoencoderKL | |
main_input_name = "sample" | |
base_precision = 1e-2 | |
def get_asym_autoencoder_kl_config(self, block_out_channels=None, norm_num_groups=None): | |
block_out_channels = block_out_channels or [2, 4] | |
norm_num_groups = norm_num_groups or 2 | |
init_dict = { | |
"in_channels": 3, | |
"out_channels": 3, | |
"down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), | |
"down_block_out_channels": block_out_channels, | |
"layers_per_down_block": 1, | |
"up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels), | |
"up_block_out_channels": block_out_channels, | |
"layers_per_up_block": 1, | |
"act_fn": "silu", | |
"latent_channels": 4, | |
"norm_num_groups": norm_num_groups, | |
"sample_size": 32, | |
"scaling_factor": 0.18215, | |
} | |
return init_dict | |
def dummy_input(self): | |
batch_size = 4 | |
num_channels = 3 | |
sizes = (32, 32) | |
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) | |
mask = torch.ones((batch_size, 1) + sizes).to(torch_device) | |
return {"sample": image, "mask": mask} | |
def input_shape(self): | |
return (3, 32, 32) | |
def output_shape(self): | |
return (3, 32, 32) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = self.get_asym_autoencoder_kl_config() | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_forward_with_norm_groups(self): | |
pass | |
class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase): | |
def get_file_format(self, seed, shape): | |
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): | |
dtype = torch.float16 if fp16 else torch.float32 | |
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) | |
return image | |
def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False): | |
revision = "main" | |
torch_dtype = torch.float32 | |
model = AsymmetricAutoencoderKL.from_pretrained( | |
model_id, | |
torch_dtype=torch_dtype, | |
revision=revision, | |
) | |
model.to(torch_device).eval() | |
return model | |
def get_generator(self, seed=0): | |
generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" | |
if torch_device != "mps": | |
return torch.Generator(device=generator_device).manual_seed(seed) | |
return torch.manual_seed(seed) | |
def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps): | |
model = self.get_sd_vae_model() | |
image = self.get_sd_image(seed) | |
generator = self.get_generator(seed) | |
with torch.no_grad(): | |
sample = model(image, generator=generator, sample_posterior=True).sample | |
assert sample.shape == image.shape | |
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) | |
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) | |
def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps): | |
model = self.get_sd_vae_model() | |
image = self.get_sd_image(seed) | |
with torch.no_grad(): | |
sample = model(image).sample | |
assert sample.shape == image.shape | |
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() | |
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) | |
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) | |
def test_stable_diffusion_decode(self, seed, expected_slice): | |
model = self.get_sd_vae_model() | |
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) | |
with torch.no_grad(): | |
sample = model.decode(encoding).sample | |
assert list(sample.shape) == [3, 3, 512, 512] | |
output_slice = sample[-1, -2:, :2, -2:].flatten().cpu() | |
expected_output_slice = torch.tensor(expected_slice) | |
assert torch_all_close(output_slice, expected_output_slice, atol=2e-3) | |
def test_stable_diffusion_decode_xformers_vs_2_0(self, seed): | |
model = self.get_sd_vae_model() | |
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) | |
with torch.no_grad(): | |
sample = model.decode(encoding).sample | |
model.enable_xformers_memory_efficient_attention() | |
with torch.no_grad(): | |
sample_2 = model.decode(encoding).sample | |
assert list(sample.shape) == [3, 3, 512, 512] | |
assert torch_all_close(sample, sample_2, atol=5e-2) | |
def test_stable_diffusion_encode_sample(self, seed, expected_slice): | |
model = self.get_sd_vae_model() | |
image = self.get_sd_image(seed) | |
generator = self.get_generator(seed) | |
with torch.no_grad(): | |
dist = model.encode(image).latent_dist | |
sample = dist.sample(generator=generator) | |
assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] | |
output_slice = sample[0, -1, -3:, -3:].flatten().cpu() | |
expected_output_slice = torch.tensor(expected_slice) | |
tolerance = 3e-3 if torch_device != "mps" else 1e-2 | |
assert torch_all_close(output_slice, expected_output_slice, atol=tolerance) | |