Omnieraser / diffusers /tests /lora /test_lora_layers_hunyuanvideo.py
theSure's picture
Upload 2037 files
a49cc2f verified
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import sys
import unittest
import numpy as np
import pytest
import torch
from transformers import CLIPTextModel, CLIPTokenizer, LlamaModel, LlamaTokenizerFast
from diffusers import (
AutoencoderKLHunyuanVideo,
FlowMatchEulerDiscreteScheduler,
HunyuanVideoPipeline,
HunyuanVideoTransformer3DModel,
)
from diffusers.utils.testing_utils import (
floats_tensor,
nightly,
numpy_cosine_similarity_distance,
require_big_gpu_with_torch_cuda,
require_peft_backend,
require_torch_gpu,
skip_mps,
)
sys.path.append(".")
from utils import PeftLoraLoaderMixinTests # noqa: E402
@require_peft_backend
@skip_mps
class HunyuanVideoLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = HunyuanVideoPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_kwargs = {}
transformer_kwargs = {
"in_channels": 4,
"out_channels": 4,
"num_attention_heads": 2,
"attention_head_dim": 10,
"num_layers": 1,
"num_single_layers": 1,
"num_refiner_layers": 1,
"patch_size": 1,
"patch_size_t": 1,
"guidance_embeds": True,
"text_embed_dim": 16,
"pooled_projection_dim": 8,
"rope_axes_dim": (2, 4, 4),
}
transformer_cls = HunyuanVideoTransformer3DModel
vae_kwargs = {
"in_channels": 3,
"out_channels": 3,
"latent_channels": 4,
"down_block_types": (
"HunyuanVideoDownBlock3D",
"HunyuanVideoDownBlock3D",
"HunyuanVideoDownBlock3D",
"HunyuanVideoDownBlock3D",
),
"up_block_types": (
"HunyuanVideoUpBlock3D",
"HunyuanVideoUpBlock3D",
"HunyuanVideoUpBlock3D",
"HunyuanVideoUpBlock3D",
),
"block_out_channels": (8, 8, 8, 8),
"layers_per_block": 1,
"act_fn": "silu",
"norm_num_groups": 4,
"scaling_factor": 0.476986,
"spatial_compression_ratio": 8,
"temporal_compression_ratio": 4,
"mid_block_add_attention": True,
}
vae_cls = AutoencoderKLHunyuanVideo
has_two_text_encoders = True
tokenizer_cls, tokenizer_id, tokenizer_subfolder = (
LlamaTokenizerFast,
"hf-internal-testing/tiny-random-hunyuanvideo",
"tokenizer",
)
tokenizer_2_cls, tokenizer_2_id, tokenizer_2_subfolder = (
CLIPTokenizer,
"hf-internal-testing/tiny-random-hunyuanvideo",
"tokenizer_2",
)
text_encoder_cls, text_encoder_id, text_encoder_subfolder = (
LlamaModel,
"hf-internal-testing/tiny-random-hunyuanvideo",
"text_encoder",
)
text_encoder_2_cls, text_encoder_2_id, text_encoder_2_subfolder = (
CLIPTextModel,
"hf-internal-testing/tiny-random-hunyuanvideo",
"text_encoder_2",
)
@property
def output_shape(self):
return (1, 9, 32, 32, 3)
def get_dummy_inputs(self, with_generator=True):
batch_size = 1
sequence_length = 16
num_channels = 4
num_frames = 9
num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1
sizes = (4, 4)
generator = torch.manual_seed(0)
noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes)
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
pipeline_inputs = {
"prompt": "",
"num_frames": num_frames,
"num_inference_steps": 1,
"guidance_scale": 6.0,
"height": 32,
"width": 32,
"max_sequence_length": sequence_length,
"prompt_template": {"template": "{}", "crop_start": 0},
"output_type": "np",
}
if with_generator:
pipeline_inputs.update({"generator": generator})
return noise, input_ids, pipeline_inputs
def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
def test_simple_inference_with_text_denoiser_lora_unfused(self):
super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
# TODO(aryan): Fix the following test
@unittest.skip("This test fails with an error I haven't been able to debug yet.")
def test_simple_inference_save_pretrained(self):
pass
@unittest.skip("Not supported in HunyuanVideo.")
def test_simple_inference_with_text_denoiser_block_scale(self):
pass
@unittest.skip("Not supported in HunyuanVideo.")
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
pass
@unittest.skip("Not supported in HunyuanVideo.")
def test_modify_padding_mode(self):
pass
@unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.")
def test_simple_inference_with_partial_text_lora(self):
pass
@unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.")
def test_simple_inference_with_text_lora(self):
pass
@unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.")
def test_simple_inference_with_text_lora_and_scale(self):
pass
@unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.")
def test_simple_inference_with_text_lora_fused(self):
pass
@unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.")
def test_simple_inference_with_text_lora_save_load(self):
pass
@nightly
@require_torch_gpu
@require_peft_backend
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
class HunyuanVideoLoRAIntegrationTests(unittest.TestCase):
"""internal note: The integration slices were obtained on DGX.
torch: 2.5.1+cu124 with CUDA 12.5. Need the same setup for the
assertions to pass.
"""
num_inference_steps = 10
seed = 0
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
model_id = "hunyuanvideo-community/HunyuanVideo"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
model_id, subfolder="transformer", torch_dtype=torch.bfloat16
)
self.pipeline = HunyuanVideoPipeline.from_pretrained(
model_id, transformer=transformer, torch_dtype=torch.float16
).to("cuda")
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_original_format_cseti(self):
self.pipeline.load_lora_weights(
"Cseti/HunyuanVideo-LoRA-Arcane_Jinx-v1", weight_name="csetiarcane-nfjinx-v1-6000.safetensors"
)
self.pipeline.fuse_lora()
self.pipeline.unload_lora_weights()
self.pipeline.vae.enable_tiling()
prompt = "CSETIARCANE. A cat walks on the grass, realistic"
out = self.pipeline(
prompt=prompt,
height=320,
width=512,
num_frames=9,
num_inference_steps=self.num_inference_steps,
output_type="np",
generator=torch.manual_seed(self.seed),
).frames[0]
out = out.flatten()
out_slice = np.concatenate((out[:8], out[-8:]))
# fmt: off
expected_slice = np.array([0.1013, 0.1924, 0.0078, 0.1021, 0.1929, 0.0078, 0.1023, 0.1919, 0.7402, 0.104, 0.4482, 0.7354, 0.0925, 0.4382, 0.7275, 0.0815])
# fmt: on
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
assert max_diff < 1e-3