Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from torch import nn | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextConfig, | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| CLIPVisionConfig, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| from diffusers import KandinskyPriorPipeline, PriorTransformer, UnCLIPScheduler | |
| from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| class Dummies: | |
| def text_embedder_hidden_size(self): | |
| return 32 | |
| def time_input_dim(self): | |
| return 32 | |
| def block_out_channels_0(self): | |
| return self.time_input_dim | |
| def time_embed_dim(self): | |
| return self.time_input_dim * 4 | |
| def cross_attention_dim(self): | |
| return 100 | |
| def dummy_tokenizer(self): | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| return tokenizer | |
| def dummy_text_encoder(self): | |
| torch.manual_seed(0) | |
| config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=self.text_embedder_hidden_size, | |
| projection_dim=self.text_embedder_hidden_size, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| return CLIPTextModelWithProjection(config) | |
| def dummy_prior(self): | |
| torch.manual_seed(0) | |
| model_kwargs = { | |
| "num_attention_heads": 2, | |
| "attention_head_dim": 12, | |
| "embedding_dim": self.text_embedder_hidden_size, | |
| "num_layers": 1, | |
| } | |
| model = PriorTransformer(**model_kwargs) | |
| # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 | |
| model.clip_std = nn.Parameter(torch.ones(model.clip_std.shape)) | |
| return model | |
| def dummy_image_encoder(self): | |
| torch.manual_seed(0) | |
| config = CLIPVisionConfig( | |
| hidden_size=self.text_embedder_hidden_size, | |
| image_size=224, | |
| projection_dim=self.text_embedder_hidden_size, | |
| intermediate_size=37, | |
| num_attention_heads=4, | |
| num_channels=3, | |
| num_hidden_layers=5, | |
| patch_size=14, | |
| ) | |
| model = CLIPVisionModelWithProjection(config) | |
| return model | |
| def dummy_image_processor(self): | |
| image_processor = CLIPImageProcessor( | |
| crop_size=224, | |
| do_center_crop=True, | |
| do_normalize=True, | |
| do_resize=True, | |
| image_mean=[0.48145466, 0.4578275, 0.40821073], | |
| image_std=[0.26862954, 0.26130258, 0.27577711], | |
| resample=3, | |
| size=224, | |
| ) | |
| return image_processor | |
| def get_dummy_components(self): | |
| prior = self.dummy_prior | |
| image_encoder = self.dummy_image_encoder | |
| text_encoder = self.dummy_text_encoder | |
| tokenizer = self.dummy_tokenizer | |
| image_processor = self.dummy_image_processor | |
| scheduler = UnCLIPScheduler( | |
| variance_type="fixed_small_log", | |
| prediction_type="sample", | |
| num_train_timesteps=1000, | |
| clip_sample=True, | |
| clip_sample_range=10.0, | |
| ) | |
| components = { | |
| "prior": prior, | |
| "image_encoder": image_encoder, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "scheduler": scheduler, | |
| "image_processor": image_processor, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "horse", | |
| "generator": generator, | |
| "guidance_scale": 4.0, | |
| "num_inference_steps": 2, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| class KandinskyPriorPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = KandinskyPriorPipeline | |
| params = ["prompt"] | |
| batch_params = ["prompt", "negative_prompt"] | |
| required_optional_params = [ | |
| "num_images_per_prompt", | |
| "generator", | |
| "num_inference_steps", | |
| "latents", | |
| "negative_prompt", | |
| "guidance_scale", | |
| "output_type", | |
| "return_dict", | |
| ] | |
| test_xformers_attention = False | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| dummy = Dummies() | |
| return dummy.get_dummy_components() | |
| def get_dummy_inputs(self, device, seed=0): | |
| dummy = Dummies() | |
| return dummy.get_dummy_inputs(device=device, seed=seed) | |
| def test_kandinsky_prior(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| output = pipe(**self.get_dummy_inputs(device)) | |
| image = output.image_embeds | |
| image_from_tuple = pipe( | |
| **self.get_dummy_inputs(device), | |
| return_dict=False, | |
| )[0] | |
| image_slice = image[0, -10:] | |
| image_from_tuple_slice = image_from_tuple[0, -10:] | |
| assert image.shape == (1, 32) | |
| expected_slice = np.array( | |
| [-0.5948, 0.1875, -0.1523, -1.1995, -1.4061, -0.6367, -1.4607, -0.6406, 0.8793, -0.3891] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=1e-2) | |
| def test_attention_slicing_forward_pass(self): | |
| test_max_difference = torch_device == "cpu" | |
| test_mean_pixel_difference = False | |
| self._test_attention_slicing_forward_pass( | |
| test_max_difference=test_max_difference, | |
| test_mean_pixel_difference=test_mean_pixel_difference, | |
| ) | |