Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import random | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from transformers import XLMRobertaTokenizerFast | |
| from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel | |
| from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| floats_tensor, | |
| load_image, | |
| load_numpy, | |
| nightly, | |
| require_torch_gpu, | |
| torch_device, | |
| ) | |
| from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference | |
| enable_full_determinism() | |
| class Dummies: | |
| def text_embedder_hidden_size(self): | |
| return 32 | |
| def time_input_dim(self): | |
| return 32 | |
| def block_out_channels_0(self): | |
| return self.time_input_dim | |
| def time_embed_dim(self): | |
| return self.time_input_dim * 4 | |
| def cross_attention_dim(self): | |
| return 32 | |
| def dummy_tokenizer(self): | |
| tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base") | |
| return tokenizer | |
| def dummy_text_encoder(self): | |
| torch.manual_seed(0) | |
| config = MCLIPConfig( | |
| numDims=self.cross_attention_dim, | |
| transformerDimensions=self.text_embedder_hidden_size, | |
| hidden_size=self.text_embedder_hidden_size, | |
| intermediate_size=37, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| vocab_size=1005, | |
| ) | |
| text_encoder = MultilingualCLIP(config) | |
| text_encoder = text_encoder.eval() | |
| return text_encoder | |
| def dummy_unet(self): | |
| torch.manual_seed(0) | |
| model_kwargs = { | |
| "in_channels": 9, | |
| # Out channels is double in channels because predicts mean and variance | |
| "out_channels": 8, | |
| "addition_embed_type": "text_image", | |
| "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), | |
| "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), | |
| "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", | |
| "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), | |
| "layers_per_block": 1, | |
| "encoder_hid_dim": self.text_embedder_hidden_size, | |
| "encoder_hid_dim_type": "text_image_proj", | |
| "cross_attention_dim": self.cross_attention_dim, | |
| "attention_head_dim": 4, | |
| "resnet_time_scale_shift": "scale_shift", | |
| "class_embed_type": None, | |
| } | |
| model = UNet2DConditionModel(**model_kwargs) | |
| return model | |
| def dummy_movq_kwargs(self): | |
| return { | |
| "block_out_channels": [32, 64], | |
| "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], | |
| "in_channels": 3, | |
| "latent_channels": 4, | |
| "layers_per_block": 1, | |
| "norm_num_groups": 8, | |
| "norm_type": "spatial", | |
| "num_vq_embeddings": 12, | |
| "out_channels": 3, | |
| "up_block_types": [ | |
| "AttnUpDecoderBlock2D", | |
| "UpDecoderBlock2D", | |
| ], | |
| "vq_embed_dim": 4, | |
| } | |
| def dummy_movq(self): | |
| torch.manual_seed(0) | |
| model = VQModel(**self.dummy_movq_kwargs) | |
| return model | |
| def get_dummy_components(self): | |
| text_encoder = self.dummy_text_encoder | |
| tokenizer = self.dummy_tokenizer | |
| unet = self.dummy_unet | |
| movq = self.dummy_movq | |
| scheduler = DDIMScheduler( | |
| num_train_timesteps=1000, | |
| beta_schedule="linear", | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| steps_offset=1, | |
| prediction_type="epsilon", | |
| thresholding=False, | |
| ) | |
| components = { | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "movq": movq, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device) | |
| negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device) | |
| # create init_image | |
| image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) | |
| image = image.cpu().permute(0, 2, 3, 1)[0] | |
| init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256)) | |
| # create mask | |
| mask = np.zeros((64, 64), dtype=np.float32) | |
| mask[:32, :32] = 1 | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "horse", | |
| "image": init_image, | |
| "mask_image": mask, | |
| "image_embeds": image_embeds, | |
| "negative_image_embeds": negative_image_embeds, | |
| "generator": generator, | |
| "height": 64, | |
| "width": 64, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 4.0, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| class KandinskyInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = KandinskyInpaintPipeline | |
| params = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] | |
| batch_params = [ | |
| "prompt", | |
| "negative_prompt", | |
| "image_embeds", | |
| "negative_image_embeds", | |
| "image", | |
| "mask_image", | |
| ] | |
| required_optional_params = [ | |
| "generator", | |
| "height", | |
| "width", | |
| "latents", | |
| "guidance_scale", | |
| "negative_prompt", | |
| "num_inference_steps", | |
| "return_dict", | |
| "guidance_scale", | |
| "num_images_per_prompt", | |
| "output_type", | |
| "return_dict", | |
| ] | |
| test_xformers_attention = False | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| dummies = Dummies() | |
| return dummies.get_dummy_components() | |
| def get_dummy_inputs(self, device, seed=0): | |
| dummies = Dummies() | |
| return dummies.get_dummy_inputs(device=device, seed=seed) | |
| def test_kandinsky_inpaint(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| output = pipe(**self.get_dummy_inputs(device)) | |
| image = output.images | |
| image_from_tuple = pipe( | |
| **self.get_dummy_inputs(device), | |
| return_dict=False, | |
| )[0] | |
| image_slice = image[0, -3:, -3:, -1] | |
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.8222, 0.8896, 0.4373, 0.8088, 0.4905, 0.2609, 0.6816, 0.4291, 0.5129]) | |
| assert ( | |
| np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" | |
| assert ( | |
| np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
| ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" | |
| def test_inference_batch_single_identical(self): | |
| super().test_inference_batch_single_identical(expected_max_diff=3e-3) | |
| def test_offloads(self): | |
| pipes = [] | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components).to(torch_device) | |
| pipes.append(sd_pipe) | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe.enable_model_cpu_offload() | |
| pipes.append(sd_pipe) | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe.enable_sequential_cpu_offload() | |
| pipes.append(sd_pipe) | |
| image_slices = [] | |
| for pipe in pipes: | |
| inputs = self.get_dummy_inputs(torch_device) | |
| image = pipe(**inputs).images | |
| image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
| assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
| assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
| def test_float16_inference(self): | |
| super().test_float16_inference(expected_max_diff=5e-1) | |
| class KandinskyInpaintPipelineIntegrationTests(unittest.TestCase): | |
| def setUp(self): | |
| # clean up the VRAM before each test | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_kandinsky_inpaint(self): | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" | |
| ) | |
| init_image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" | |
| ) | |
| mask = np.zeros((768, 768), dtype=np.float32) | |
| mask[:250, 250:-250] = 1 | |
| prompt = "a hat" | |
| pipe_prior = KandinskyPriorPipeline.from_pretrained( | |
| "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 | |
| ) | |
| pipe_prior.to(torch_device) | |
| pipeline = KandinskyInpaintPipeline.from_pretrained( | |
| "kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16 | |
| ) | |
| pipeline = pipeline.to(torch_device) | |
| pipeline.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| image_emb, zero_image_emb = pipe_prior( | |
| prompt, | |
| generator=generator, | |
| num_inference_steps=5, | |
| negative_prompt="", | |
| ).to_tuple() | |
| output = pipeline( | |
| prompt, | |
| image=init_image, | |
| mask_image=mask, | |
| image_embeds=image_emb, | |
| negative_image_embeds=zero_image_emb, | |
| generator=generator, | |
| num_inference_steps=100, | |
| height=768, | |
| width=768, | |
| output_type="np", | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (768, 768, 3) | |
| assert_mean_pixel_difference(image, expected_image) | |