Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import numpy as np | |
| from diffusers import KandinskyCombinedPipeline, KandinskyImg2ImgCombinedPipeline, KandinskyInpaintCombinedPipeline | |
| from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| from .test_kandinsky import Dummies | |
| from .test_kandinsky_img2img import Dummies as Img2ImgDummies | |
| from .test_kandinsky_inpaint import Dummies as InpaintDummies | |
| from .test_kandinsky_prior import Dummies as PriorDummies | |
| enable_full_determinism() | |
| class KandinskyPipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = KandinskyCombinedPipeline | |
| params = [ | |
| "prompt", | |
| ] | |
| batch_params = ["prompt", "negative_prompt"] | |
| required_optional_params = [ | |
| "generator", | |
| "height", | |
| "width", | |
| "latents", | |
| "guidance_scale", | |
| "negative_prompt", | |
| "num_inference_steps", | |
| "return_dict", | |
| "guidance_scale", | |
| "num_images_per_prompt", | |
| "output_type", | |
| "return_dict", | |
| ] | |
| test_xformers_attention = True | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| dummy = Dummies() | |
| prior_dummy = PriorDummies() | |
| components = dummy.get_dummy_components() | |
| components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| prior_dummy = PriorDummies() | |
| inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) | |
| inputs.update( | |
| { | |
| "height": 64, | |
| "width": 64, | |
| } | |
| ) | |
| return inputs | |
| def test_kandinsky(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| output = pipe(**self.get_dummy_inputs(device)) | |
| image = output.images | |
| image_from_tuple = pipe( | |
| **self.get_dummy_inputs(device), | |
| return_dict=False, | |
| )[0] | |
| image_slice = image[0, -3:, -3:, -1] | |
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.2893, 0.1464, 0.4603, 0.3529, 0.4612, 0.7701, 0.4027, 0.3051, 0.5155]) | |
| assert ( | |
| np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" | |
| assert ( | |
| np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
| ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" | |
| def test_offloads(self): | |
| pipes = [] | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components).to(torch_device) | |
| pipes.append(sd_pipe) | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe.enable_model_cpu_offload() | |
| pipes.append(sd_pipe) | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe.enable_sequential_cpu_offload() | |
| pipes.append(sd_pipe) | |
| image_slices = [] | |
| for pipe in pipes: | |
| inputs = self.get_dummy_inputs(torch_device) | |
| image = pipe(**inputs).images | |
| image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
| assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
| assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
| def test_inference_batch_single_identical(self): | |
| super().test_inference_batch_single_identical(expected_max_diff=1e-2) | |
| def test_float16_inference(self): | |
| super().test_float16_inference(expected_max_diff=2e-1) | |
| def test_dict_tuple_outputs_equivalent(self): | |
| super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4) | |
| class KandinskyPipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = KandinskyImg2ImgCombinedPipeline | |
| params = ["prompt", "image"] | |
| batch_params = ["prompt", "negative_prompt", "image"] | |
| required_optional_params = [ | |
| "generator", | |
| "height", | |
| "width", | |
| "latents", | |
| "guidance_scale", | |
| "negative_prompt", | |
| "num_inference_steps", | |
| "return_dict", | |
| "guidance_scale", | |
| "num_images_per_prompt", | |
| "output_type", | |
| "return_dict", | |
| ] | |
| test_xformers_attention = False | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| dummy = Img2ImgDummies() | |
| prior_dummy = PriorDummies() | |
| components = dummy.get_dummy_components() | |
| components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| prior_dummy = PriorDummies() | |
| dummy = Img2ImgDummies() | |
| inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) | |
| inputs.update(dummy.get_dummy_inputs(device=device, seed=seed)) | |
| inputs.pop("image_embeds") | |
| inputs.pop("negative_image_embeds") | |
| return inputs | |
| def test_kandinsky(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| output = pipe(**self.get_dummy_inputs(device)) | |
| image = output.images | |
| image_from_tuple = pipe( | |
| **self.get_dummy_inputs(device), | |
| return_dict=False, | |
| )[0] | |
| image_slice = image[0, -3:, -3:, -1] | |
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.4852, 0.4136, 0.4539, 0.4781, 0.4680, 0.5217, 0.4973, 0.4089, 0.4977]) | |
| assert ( | |
| np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" | |
| assert ( | |
| np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
| ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" | |
| def test_offloads(self): | |
| pipes = [] | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components).to(torch_device) | |
| pipes.append(sd_pipe) | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe.enable_model_cpu_offload() | |
| pipes.append(sd_pipe) | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe.enable_sequential_cpu_offload() | |
| pipes.append(sd_pipe) | |
| image_slices = [] | |
| for pipe in pipes: | |
| inputs = self.get_dummy_inputs(torch_device) | |
| image = pipe(**inputs).images | |
| image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
| assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
| assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
| def test_inference_batch_single_identical(self): | |
| super().test_inference_batch_single_identical(expected_max_diff=1e-2) | |
| def test_float16_inference(self): | |
| super().test_float16_inference(expected_max_diff=5e-1) | |
| def test_dict_tuple_outputs_equivalent(self): | |
| super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4) | |
| def test_save_load_optional_components(self): | |
| super().test_save_load_optional_components(expected_max_difference=5e-4) | |
| class KandinskyPipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = KandinskyInpaintCombinedPipeline | |
| params = ["prompt", "image", "mask_image"] | |
| batch_params = ["prompt", "negative_prompt", "image", "mask_image"] | |
| required_optional_params = [ | |
| "generator", | |
| "height", | |
| "width", | |
| "latents", | |
| "guidance_scale", | |
| "negative_prompt", | |
| "num_inference_steps", | |
| "return_dict", | |
| "guidance_scale", | |
| "num_images_per_prompt", | |
| "output_type", | |
| "return_dict", | |
| ] | |
| test_xformers_attention = False | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| dummy = InpaintDummies() | |
| prior_dummy = PriorDummies() | |
| components = dummy.get_dummy_components() | |
| components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| prior_dummy = PriorDummies() | |
| dummy = InpaintDummies() | |
| inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) | |
| inputs.update(dummy.get_dummy_inputs(device=device, seed=seed)) | |
| inputs.pop("image_embeds") | |
| inputs.pop("negative_image_embeds") | |
| return inputs | |
| def test_kandinsky(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| output = pipe(**self.get_dummy_inputs(device)) | |
| image = output.images | |
| image_from_tuple = pipe( | |
| **self.get_dummy_inputs(device), | |
| return_dict=False, | |
| )[0] | |
| image_slice = image[0, -3:, -3:, -1] | |
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.0320, 0.0860, 0.4013, 0.0518, 0.2484, 0.5847, 0.4411, 0.2321, 0.4593]) | |
| assert ( | |
| np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" | |
| assert ( | |
| np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
| ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" | |
| def test_offloads(self): | |
| pipes = [] | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components).to(torch_device) | |
| pipes.append(sd_pipe) | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe.enable_model_cpu_offload() | |
| pipes.append(sd_pipe) | |
| components = self.get_dummy_components() | |
| sd_pipe = self.pipeline_class(**components) | |
| sd_pipe.enable_sequential_cpu_offload() | |
| pipes.append(sd_pipe) | |
| image_slices = [] | |
| for pipe in pipes: | |
| inputs = self.get_dummy_inputs(torch_device) | |
| image = pipe(**inputs).images | |
| image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
| assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
| assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
| def test_inference_batch_single_identical(self): | |
| super().test_inference_batch_single_identical(expected_max_diff=1e-2) | |
| def test_float16_inference(self): | |
| super().test_float16_inference(expected_max_diff=5e-1) | |
| def test_dict_tuple_outputs_equivalent(self): | |
| super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4) | |
| def test_save_load_optional_components(self): | |
| super().test_save_load_optional_components(expected_max_difference=5e-4) | |
| def test_save_load_local(self): | |
| super().test_save_load_local(expected_max_difference=5e-3) | |