Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,257 Bytes
a49cc2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
# coding=utf-8
# Copyright 2024 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import pytest
from huggingface_hub import hf_hub_download
from diffusers import (
BitsAndBytesConfig,
DiffusionPipeline,
FluxTransformer2DModel,
SanaTransformer2DModel,
SD3Transformer2DModel,
logging,
)
from diffusers.utils import is_accelerate_version
from diffusers.utils.testing_utils import (
CaptureLogger,
is_bitsandbytes_available,
is_torch_available,
is_transformers_available,
load_pt,
numpy_cosine_similarity_distance,
require_accelerate,
require_bitsandbytes_version_greater,
require_peft_version_greater,
require_torch,
require_torch_gpu,
require_transformers_version_greater,
slow,
torch_device,
)
def get_some_linear_layer(model):
if model.__class__.__name__ in ["SD3Transformer2DModel", "FluxTransformer2DModel"]:
return model.transformer_blocks[0].attn.to_q
else:
return NotImplementedError("Don't know what layer to retrieve here.")
if is_transformers_available():
from transformers import BitsAndBytesConfig as BnbConfig
from transformers import T5EncoderModel
if is_torch_available():
import torch
import torch.nn as nn
class LoRALayer(nn.Module):
"""Wraps a linear layer with LoRA-like adapter - Used for testing purposes only
Taken from
https://github.com/huggingface/transformers/blob/566302686a71de14125717dea9a6a45b24d42b37/tests/quantization/bnb/test_8bit.py#L62C5-L78C77
"""
def __init__(self, module: nn.Module, rank: int):
super().__init__()
self.module = module
self.adapter = nn.Sequential(
nn.Linear(module.in_features, rank, bias=False),
nn.Linear(rank, module.out_features, bias=False),
)
small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight, std=small_std)
nn.init.zeros_(self.adapter[1].weight)
self.adapter.to(module.weight.device)
def forward(self, input, *args, **kwargs):
return self.module(input, *args, **kwargs) + self.adapter(input)
if is_bitsandbytes_available():
import bitsandbytes as bnb
@require_bitsandbytes_version_greater("0.43.2")
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class Base8bitTests(unittest.TestCase):
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only SD3 to test our module
model_name = "stabilityai/stable-diffusion-3-medium-diffusers"
# This was obtained on audace so the number might slightly change
expected_rel_difference = 1.94
prompt = "a beautiful sunset amidst the mountains."
num_inference_steps = 10
seed = 0
def get_dummy_inputs(self):
prompt_embeds = load_pt(
"https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/prompt_embeds.pt"
)
pooled_prompt_embeds = load_pt(
"https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/pooled_prompt_embeds.pt"
)
latent_model_input = load_pt(
"https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/latent_model_input.pt"
)
input_dict_for_transformer = {
"hidden_states": latent_model_input,
"encoder_hidden_states": prompt_embeds,
"pooled_projections": pooled_prompt_embeds,
"timestep": torch.Tensor([1.0]),
"return_dict": False,
}
return input_dict_for_transformer
class BnB8bitBasicTests(Base8bitTests):
def setUp(self):
gc.collect()
torch.cuda.empty_cache()
# Models
self.model_fp16 = SD3Transformer2DModel.from_pretrained(
self.model_name, subfolder="transformer", torch_dtype=torch.float16
)
mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True)
self.model_8bit = SD3Transformer2DModel.from_pretrained(
self.model_name, subfolder="transformer", quantization_config=mixed_int8_config
)
def tearDown(self):
del self.model_fp16
del self.model_8bit
gc.collect()
torch.cuda.empty_cache()
def test_quantization_num_parameters(self):
r"""
Test if the number of returned parameters is correct
"""
num_params_8bit = self.model_8bit.num_parameters()
num_params_fp16 = self.model_fp16.num_parameters()
self.assertEqual(num_params_8bit, num_params_fp16)
def test_quantization_config_json_serialization(self):
r"""
A simple test to check if the quantization config is correctly serialized and deserialized
"""
config = self.model_8bit.config
self.assertTrue("quantization_config" in config)
_ = config["quantization_config"].to_dict()
_ = config["quantization_config"].to_diff_dict()
_ = config["quantization_config"].to_json_string()
def test_memory_footprint(self):
r"""
A simple test to check if the model conversion has been done correctly by checking on the
memory footprint of the converted model and the class type of the linear layers of the converted models
"""
mem_fp16 = self.model_fp16.get_memory_footprint()
mem_8bit = self.model_8bit.get_memory_footprint()
self.assertAlmostEqual(mem_fp16 / mem_8bit, self.expected_rel_difference, delta=1e-2)
linear = get_some_linear_layer(self.model_8bit)
self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params)
def test_original_dtype(self):
r"""
A simple test to check if the model succesfully stores the original dtype
"""
self.assertTrue("_pre_quantization_dtype" in self.model_8bit.config)
self.assertFalse("_pre_quantization_dtype" in self.model_fp16.config)
self.assertTrue(self.model_8bit.config["_pre_quantization_dtype"] == torch.float16)
def test_keep_modules_in_fp32(self):
r"""
A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32.
Also ensures if inference works.
"""
fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules
SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"]
mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True)
model = SD3Transformer2DModel.from_pretrained(
self.model_name, subfolder="transformer", quantization_config=mixed_int8_config
)
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
if name in model._keep_in_fp32_modules:
self.assertTrue(module.weight.dtype == torch.float32)
else:
# 8-bit parameters are packed in int8 variables
self.assertTrue(module.weight.dtype == torch.int8)
# test if inference works.
with torch.no_grad() and torch.amp.autocast("cuda", dtype=torch.float16):
input_dict_for_transformer = self.get_dummy_inputs()
model_inputs = {
k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
}
model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
_ = model(**model_inputs)
SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules
def test_linear_are_8bit(self):
r"""
A simple test to check if the model conversion has been done correctly by checking on the
memory footprint of the converted model and the class type of the linear layers of the converted models
"""
self.model_fp16.get_memory_footprint()
self.model_8bit.get_memory_footprint()
for name, module in self.model_8bit.named_modules():
if isinstance(module, torch.nn.Linear):
if name not in ["proj_out"]:
# 8-bit parameters are packed in int8 variables
self.assertTrue(module.weight.dtype == torch.int8)
def test_llm_skip(self):
r"""
A simple test to check if `llm_int8_skip_modules` works as expected
"""
config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["proj_out"])
model_8bit = SD3Transformer2DModel.from_pretrained(
self.model_name, subfolder="transformer", quantization_config=config
)
linear = get_some_linear_layer(model_8bit)
self.assertTrue(linear.weight.dtype == torch.int8)
self.assertTrue(isinstance(linear, bnb.nn.Linear8bitLt))
self.assertTrue(isinstance(model_8bit.proj_out, nn.Linear))
self.assertTrue(model_8bit.proj_out.weight.dtype != torch.int8)
def test_config_from_pretrained(self):
transformer_8bit = FluxTransformer2DModel.from_pretrained(
"hf-internal-testing/flux.1-dev-int8-pkg", subfolder="transformer"
)
linear = get_some_linear_layer(transformer_8bit)
self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
def test_device_and_dtype_assignment(self):
r"""
Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error.
Checks also if other models are casted correctly.
"""
with self.assertRaises(ValueError):
# Tries with `str`
self.model_8bit.to("cpu")
with self.assertRaises(ValueError):
# Tries with a `dtype``
self.model_8bit.to(torch.float16)
with self.assertRaises(ValueError):
# Tries with a `device`
self.model_8bit.to(torch.device("cuda:0"))
with self.assertRaises(ValueError):
# Tries with a `device`
self.model_8bit.float()
with self.assertRaises(ValueError):
# Tries with a `device`
self.model_8bit.half()
# Test if we did not break anything
self.model_fp16 = self.model_fp16.to(dtype=torch.float32, device=torch_device)
input_dict_for_transformer = self.get_dummy_inputs()
model_inputs = {
k: v.to(dtype=torch.float32, device=torch_device)
for k, v in input_dict_for_transformer.items()
if not isinstance(v, bool)
}
model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
with torch.no_grad():
_ = self.model_fp16(**model_inputs)
# Check this does not throw an error
_ = self.model_fp16.to("cpu")
# Check this does not throw an error
_ = self.model_fp16.half()
# Check this does not throw an error
_ = self.model_fp16.float()
# Check that this does not throw an error
_ = self.model_fp16.cuda()
class Bnb8bitDeviceTests(Base8bitTests):
def setUp(self) -> None:
gc.collect()
torch.cuda.empty_cache()
mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True)
self.model_8bit = SanaTransformer2DModel.from_pretrained(
"Efficient-Large-Model/Sana_1600M_4Kpx_BF16_diffusers",
subfolder="transformer",
quantization_config=mixed_int8_config,
)
def tearDown(self):
del self.model_8bit
gc.collect()
torch.cuda.empty_cache()
def test_buffers_device_assignment(self):
for buffer_name, buffer in self.model_8bit.named_buffers():
self.assertEqual(
buffer.device.type,
torch.device(torch_device).type,
f"Expected device {torch_device} for {buffer_name} got {buffer.device}.",
)
class BnB8bitTrainingTests(Base8bitTests):
def setUp(self):
gc.collect()
torch.cuda.empty_cache()
mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True)
self.model_8bit = SD3Transformer2DModel.from_pretrained(
self.model_name, subfolder="transformer", quantization_config=mixed_int8_config
)
def test_training(self):
# Step 1: freeze all parameters
for param in self.model_8bit.parameters():
param.requires_grad = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
param.data = param.data.to(torch.float32)
# Step 2: add adapters
for _, module in self.model_8bit.named_modules():
if "Attention" in repr(type(module)):
module.to_k = LoRALayer(module.to_k, rank=4)
module.to_q = LoRALayer(module.to_q, rank=4)
module.to_v = LoRALayer(module.to_v, rank=4)
# Step 3: dummy batch
input_dict_for_transformer = self.get_dummy_inputs()
model_inputs = {
k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
}
model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
# Step 4: Check if the gradient is not None
with torch.amp.autocast("cuda", dtype=torch.float16):
out = self.model_8bit(**model_inputs)[0]
out.norm().backward()
for module in self.model_8bit.modules():
if isinstance(module, LoRALayer):
self.assertTrue(module.adapter[1].weight.grad is not None)
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
@require_transformers_version_greater("4.44.0")
class SlowBnb8bitTests(Base8bitTests):
def setUp(self) -> None:
gc.collect()
torch.cuda.empty_cache()
mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True)
model_8bit = SD3Transformer2DModel.from_pretrained(
self.model_name, subfolder="transformer", quantization_config=mixed_int8_config
)
self.pipeline_8bit = DiffusionPipeline.from_pretrained(
self.model_name, transformer=model_8bit, torch_dtype=torch.float16
)
self.pipeline_8bit.enable_model_cpu_offload()
def tearDown(self):
del self.pipeline_8bit
gc.collect()
torch.cuda.empty_cache()
def test_quality(self):
output = self.pipeline_8bit(
prompt=self.prompt,
num_inference_steps=self.num_inference_steps,
generator=torch.manual_seed(self.seed),
output_type="np",
).images
out_slice = output[0, -3:, -3:, -1].flatten()
expected_slice = np.array([0.0674, 0.0623, 0.0364, 0.0632, 0.0671, 0.0430, 0.0317, 0.0493, 0.0583])
max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
self.assertTrue(max_diff < 1e-2)
def test_model_cpu_offload_raises_warning(self):
model_8bit = SD3Transformer2DModel.from_pretrained(
self.model_name, subfolder="transformer", quantization_config=BitsAndBytesConfig(load_in_8bit=True)
)
pipeline_8bit = DiffusionPipeline.from_pretrained(
self.model_name, transformer=model_8bit, torch_dtype=torch.float16
)
logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
pipeline_8bit.enable_model_cpu_offload()
assert "has been loaded in `bitsandbytes` 8bit" in cap_logger.out
def test_moving_to_cpu_throws_warning(self):
model_8bit = SD3Transformer2DModel.from_pretrained(
self.model_name, subfolder="transformer", quantization_config=BitsAndBytesConfig(load_in_8bit=True)
)
logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
# Because `model.dtype` will return torch.float16 as SD3 transformer has
# a conv layer as the first layer.
_ = DiffusionPipeline.from_pretrained(
self.model_name, transformer=model_8bit, torch_dtype=torch.float16
).to("cpu")
assert "Pipelines loaded with `dtype=torch.float16`" in cap_logger.out
def test_generate_quality_dequantize(self):
r"""
Test that loading the model and unquantize it produce correct results.
"""
self.pipeline_8bit.transformer.dequantize()
output = self.pipeline_8bit(
prompt=self.prompt,
num_inference_steps=self.num_inference_steps,
generator=torch.manual_seed(self.seed),
output_type="np",
).images
out_slice = output[0, -3:, -3:, -1].flatten()
expected_slice = np.array([0.0266, 0.0264, 0.0271, 0.0110, 0.0310, 0.0098, 0.0078, 0.0256, 0.0208])
max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
self.assertTrue(max_diff < 1e-2)
# 8bit models cannot be offloaded to CPU.
self.assertTrue(self.pipeline_8bit.transformer.device.type == "cuda")
# calling it again shouldn't be a problem
_ = self.pipeline_8bit(
prompt=self.prompt,
num_inference_steps=2,
generator=torch.manual_seed(self.seed),
output_type="np",
).images
@pytest.mark.xfail(
condition=is_accelerate_version("<=", "1.1.1"),
reason="Test will pass after https://github.com/huggingface/accelerate/pull/3223 is in a release.",
strict=True,
)
def test_pipeline_cuda_placement_works_with_mixed_int8(self):
transformer_8bit_config = BitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = SD3Transformer2DModel.from_pretrained(
self.model_name,
subfolder="transformer",
quantization_config=transformer_8bit_config,
torch_dtype=torch.float16,
)
text_encoder_3_8bit_config = BnbConfig(load_in_8bit=True)
text_encoder_3_8bit = T5EncoderModel.from_pretrained(
self.model_name,
subfolder="text_encoder_3",
quantization_config=text_encoder_3_8bit_config,
torch_dtype=torch.float16,
)
# CUDA device placement works.
pipeline_8bit = DiffusionPipeline.from_pretrained(
self.model_name,
transformer=transformer_8bit,
text_encoder_3=text_encoder_3_8bit,
torch_dtype=torch.float16,
).to("cuda")
# Check if inference works.
_ = pipeline_8bit("table", max_sequence_length=20, num_inference_steps=2)
del pipeline_8bit
@require_transformers_version_greater("4.44.0")
class SlowBnb8bitFluxTests(Base8bitTests):
def setUp(self) -> None:
gc.collect()
torch.cuda.empty_cache()
model_id = "hf-internal-testing/flux.1-dev-int8-pkg"
t5_8bit = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder_2")
transformer_8bit = FluxTransformer2DModel.from_pretrained(model_id, subfolder="transformer")
self.pipeline_8bit = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
text_encoder_2=t5_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
)
self.pipeline_8bit.enable_model_cpu_offload()
def tearDown(self):
del self.pipeline_8bit
gc.collect()
torch.cuda.empty_cache()
def test_quality(self):
# keep the resolution and max tokens to a lower number for faster execution.
output = self.pipeline_8bit(
prompt=self.prompt,
num_inference_steps=self.num_inference_steps,
generator=torch.manual_seed(self.seed),
height=256,
width=256,
max_sequence_length=64,
output_type="np",
).images
out_slice = output[0, -3:, -3:, -1].flatten()
expected_slice = np.array([0.0574, 0.0554, 0.0581, 0.0686, 0.0676, 0.0759, 0.0757, 0.0803, 0.0930])
max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
self.assertTrue(max_diff < 1e-3)
@require_peft_version_greater("0.14.0")
def test_lora_loading(self):
self.pipeline_8bit.load_lora_weights(
hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
)
self.pipeline_8bit.set_adapters("hyper-sd", adapter_weights=0.125)
output = self.pipeline_8bit(
prompt=self.prompt,
height=256,
width=256,
max_sequence_length=64,
output_type="np",
num_inference_steps=8,
generator=torch.manual_seed(42),
).images
out_slice = output[0, -3:, -3:, -1].flatten()
expected_slice = np.array([0.3916, 0.3916, 0.3887, 0.4243, 0.4155, 0.4233, 0.4570, 0.4531, 0.4248])
max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
self.assertTrue(max_diff < 1e-3)
@slow
class BaseBnb8bitSerializationTests(Base8bitTests):
def setUp(self):
gc.collect()
torch.cuda.empty_cache()
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
)
self.model_0 = SD3Transformer2DModel.from_pretrained(
self.model_name, subfolder="transformer", quantization_config=quantization_config
)
def tearDown(self):
del self.model_0
gc.collect()
torch.cuda.empty_cache()
def test_serialization(self):
r"""
Test whether it is possible to serialize a model in 8-bit. Uses most typical params as default.
"""
self.assertTrue("_pre_quantization_dtype" in self.model_0.config)
with tempfile.TemporaryDirectory() as tmpdirname:
self.model_0.save_pretrained(tmpdirname)
config = SD3Transformer2DModel.load_config(tmpdirname)
self.assertTrue("quantization_config" in config)
self.assertTrue("_pre_quantization_dtype" not in config)
model_1 = SD3Transformer2DModel.from_pretrained(tmpdirname)
# checking quantized linear module weight
linear = get_some_linear_layer(model_1)
self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
# checking memory footpring
self.assertAlmostEqual(self.model_0.get_memory_footprint() / model_1.get_memory_footprint(), 1, places=2)
# Matching all parameters and their quant_state items:
d0 = dict(self.model_0.named_parameters())
d1 = dict(model_1.named_parameters())
self.assertTrue(d0.keys() == d1.keys())
# comparing forward() outputs
dummy_inputs = self.get_dummy_inputs()
inputs = {k: v.to(torch_device) for k, v in dummy_inputs.items() if isinstance(v, torch.Tensor)}
inputs.update({k: v for k, v in dummy_inputs.items() if k not in inputs})
out_0 = self.model_0(**inputs)[0]
out_1 = model_1(**inputs)[0]
self.assertTrue(torch.equal(out_0, out_1))
def test_serialization_sharded(self):
with tempfile.TemporaryDirectory() as tmpdirname:
self.model_0.save_pretrained(tmpdirname, max_shard_size="200MB")
config = SD3Transformer2DModel.load_config(tmpdirname)
self.assertTrue("quantization_config" in config)
self.assertTrue("_pre_quantization_dtype" not in config)
model_1 = SD3Transformer2DModel.from_pretrained(tmpdirname)
# checking quantized linear module weight
linear = get_some_linear_layer(model_1)
self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
# comparing forward() outputs
dummy_inputs = self.get_dummy_inputs()
inputs = {k: v.to(torch_device) for k, v in dummy_inputs.items() if isinstance(v, torch.Tensor)}
inputs.update({k: v for k, v in dummy_inputs.items() if k not in inputs})
out_0 = self.model_0(**inputs)[0]
out_1 = model_1(**inputs)[0]
self.assertTrue(torch.equal(out_0, out_1))
|