File size: 3,679 Bytes
a49cc2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import argparse
from contextlib import nullcontext

import safetensors.torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download

from diffusers.utils.import_utils import is_accelerate_available, is_transformers_available


if is_transformers_available():
    from transformers import CLIPVisionModelWithProjection

    vision = True
else:
    vision = False

"""
python scripts/convert_flux_xlabs_ipadapter_to_diffusers.py  \
--original_state_dict_repo_id "XLabs-AI/flux-ip-adapter" \
--filename "flux-ip-adapter.safetensors"
--output_path "flux-ip-adapter-hf/"
"""


CTX = init_empty_weights if is_accelerate_available else nullcontext

parser = argparse.ArgumentParser()
parser.add_argument("--original_state_dict_repo_id", default=None, type=str)
parser.add_argument("--filename", default="flux.safetensors", type=str)
parser.add_argument("--checkpoint_path", default=None, type=str)
parser.add_argument("--output_path", type=str)
parser.add_argument("--vision_pretrained_or_path", default="openai/clip-vit-large-patch14", type=str)

args = parser.parse_args()


def load_original_checkpoint(args):
    if args.original_state_dict_repo_id is not None:
        ckpt_path = hf_hub_download(repo_id=args.original_state_dict_repo_id, filename=args.filename)
    elif args.checkpoint_path is not None:
        ckpt_path = args.checkpoint_path
    else:
        raise ValueError(" please provide either `original_state_dict_repo_id` or a local `checkpoint_path`")

    original_state_dict = safetensors.torch.load_file(ckpt_path)
    return original_state_dict


def convert_flux_ipadapter_checkpoint_to_diffusers(original_state_dict, num_layers):
    converted_state_dict = {}

    # image_proj
    ## norm
    converted_state_dict["image_proj.norm.weight"] = original_state_dict.pop("ip_adapter_proj_model.norm.weight")
    converted_state_dict["image_proj.norm.bias"] = original_state_dict.pop("ip_adapter_proj_model.norm.bias")
    ## proj
    converted_state_dict["image_proj.proj.weight"] = original_state_dict.pop("ip_adapter_proj_model.norm.weight")
    converted_state_dict["image_proj.proj.bias"] = original_state_dict.pop("ip_adapter_proj_model.norm.bias")

    # double transformer blocks
    for i in range(num_layers):
        block_prefix = f"ip_adapter.{i}."
        # to_k_ip
        converted_state_dict[f"{block_prefix}to_k_ip.bias"] = original_state_dict.pop(
            f"double_blocks.{i}.processor.ip_adapter_double_stream_k_proj.bias"
        )
        converted_state_dict[f"{block_prefix}to_k_ip.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.processor.ip_adapter_double_stream_k_proj.weight"
        )
        # to_v_ip
        converted_state_dict[f"{block_prefix}to_v_ip.bias"] = original_state_dict.pop(
            f"double_blocks.{i}.processor.ip_adapter_double_stream_v_proj.bias"
        )
        converted_state_dict[f"{block_prefix}to_k_ip.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.processor.ip_adapter_double_stream_v_proj.weight"
        )

    return converted_state_dict


def main(args):
    original_ckpt = load_original_checkpoint(args)

    num_layers = 19
    converted_ip_adapter_state_dict = convert_flux_ipadapter_checkpoint_to_diffusers(original_ckpt, num_layers)

    print("Saving Flux IP-Adapter in Diffusers format.")
    safetensors.torch.save_file(converted_ip_adapter_state_dict, f"{args.output_path}/model.safetensors")

    if vision:
        model = CLIPVisionModelWithProjection.from_pretrained(args.vision_pretrained_or_path)
        model.save_pretrained(f"{args.output_path}/image_encoder")


if __name__ == "__main__":
    main(args)