Spaces:
Build error
Build error
Upload image_validator.py
Browse files- image_validator.py +64 -0
image_validator.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import CLIPProcessor, CLIPModel, ViTImageProcessor, ViTModel
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 4 |
+
|
| 5 |
+
from warnings import filterwarnings
|
| 6 |
+
filterwarnings("ignore")
|
| 7 |
+
|
| 8 |
+
models = ["CLIP-ViT Base", "ViT Base", "DINO ViT-S16"]
|
| 9 |
+
models_info = {
|
| 10 |
+
"CLIP-ViT Base": {
|
| 11 |
+
"model_size": "386MB",
|
| 12 |
+
"model_url": "openai/clip-vit-base-patch32",
|
| 13 |
+
"efficiency": "High",
|
| 14 |
+
},
|
| 15 |
+
"ViT Base": {
|
| 16 |
+
"model_size": "304MB",
|
| 17 |
+
"model_url": "google/vit-base-patch16-224",
|
| 18 |
+
"efficiency": "High",
|
| 19 |
+
},
|
| 20 |
+
"DINO ViT-S16": {
|
| 21 |
+
"model_size": "1.34GB",
|
| 22 |
+
"model_url": "facebook/dino-vits16",
|
| 23 |
+
"efficiency": "Moderate",
|
| 24 |
+
},
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
class Image_Validator:
|
| 28 |
+
def __init__(self, model_name=None):
|
| 29 |
+
if model_name is None: model_name="ViT Base"
|
| 30 |
+
|
| 31 |
+
self.model_info = models_info[model_name]
|
| 32 |
+
model_url = self.model_info["model_url"]
|
| 33 |
+
|
| 34 |
+
if model_name == "CLIP-ViT Base":
|
| 35 |
+
self.model = CLIPModel.from_pretrained(model_url)
|
| 36 |
+
self.processor = CLIPProcessor.from_pretrained(model_url)
|
| 37 |
+
|
| 38 |
+
elif model_name == "ViT Base":
|
| 39 |
+
self.model = ViTModel.from_pretrained(model_url)
|
| 40 |
+
self.feature_extractor = ViTImageProcessor.from_pretrained(model_url)
|
| 41 |
+
|
| 42 |
+
elif model_name == "DINO ViT-S16":
|
| 43 |
+
self.model = ViTModel.from_pretrained(model_url)
|
| 44 |
+
self.feature_extractor = ViTImageProcessor.from_pretrained(model_url)
|
| 45 |
+
|
| 46 |
+
def get_image_embedding(self, image_path):
|
| 47 |
+
image = Image.open(image_path)
|
| 48 |
+
|
| 49 |
+
# Process image according to the model
|
| 50 |
+
if hasattr(self, 'processor'): # CLIP models
|
| 51 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
| 52 |
+
outputs = self.model.get_image_features(**inputs)
|
| 53 |
+
|
| 54 |
+
elif hasattr(self, 'feature_extractor'): # ViT models
|
| 55 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
| 56 |
+
outputs = self.model(**inputs).last_hidden_state
|
| 57 |
+
|
| 58 |
+
return outputs
|
| 59 |
+
|
| 60 |
+
def similarity_score(self, image_path_1, image_path_2):
|
| 61 |
+
embedding1 = self.get_image_embedding(image_path_1).reshape(1, -1)
|
| 62 |
+
embedding2 = self.get_image_embedding(image_path_2).reshape(1, -1)
|
| 63 |
+
similarity = cosine_similarity(embedding1.detach().numpy(), embedding2.detach().numpy())
|
| 64 |
+
return similarity[0][0]
|