|
from pathlib import Path
|
|
import argparse
|
|
import soundfile as sf
|
|
import torch
|
|
import io
|
|
import argparse
|
|
from matcha.hifigan.config import v1
|
|
from matcha.hifigan.denoiser import Denoiser
|
|
from matcha.hifigan.env import AttrDict
|
|
from matcha.hifigan.models import Generator as HiFiGAN
|
|
from matcha.models.matcha_tts import MatchaTTS
|
|
from matcha.text import sequence_to_text, text_to_sequence
|
|
from matcha.utils.utils import intersperse
|
|
import gradio as gr
|
|
import requests
|
|
|
|
def download_file(url, save_path):
|
|
response = requests.get(url)
|
|
with open(save_path, 'wb') as file:
|
|
file.write(response.content)
|
|
|
|
url_checkpoint = 'https://github.com/simonlobgromov/AkylAI_Matcha_Checkpoint/releases/download/Matcha-TTS/checkpoint_epoch.499.ckpt'
|
|
save_checkpoint_path = './checkpoints/checkpoint.ckpt'
|
|
url_generator = 'https://github.com/simonlobgromov/AkylAI_Matcha_HiFiGan/releases/download/Generator/generator_v1'
|
|
save_generator_path = './checkpoints/generator'
|
|
|
|
download_file(url_checkpoint, save_checkpoint_path)
|
|
download_file(url_generator, save_generator_path)
|
|
|
|
def load_matcha( checkpoint_path, device):
|
|
model = MatchaTTS.load_from_checkpoint(checkpoint_path, map_location=device)
|
|
_ = model.eval()
|
|
return model
|
|
|
|
def load_hifigan(checkpoint_path, device):
|
|
h = AttrDict(v1)
|
|
hifigan = HiFiGAN(h).to(device)
|
|
hifigan.load_state_dict(torch.load(checkpoint_path, map_location=device)["generator"])
|
|
_ = hifigan.eval()
|
|
hifigan.remove_weight_norm()
|
|
return hifigan
|
|
|
|
def load_vocoder(checkpoint_path, device):
|
|
vocoder = None
|
|
vocoder = load_hifigan(checkpoint_path, device)
|
|
denoiser = Denoiser(vocoder, mode="zeros")
|
|
return vocoder, denoiser
|
|
|
|
def process_text(i: int, text: str, device: torch.device):
|
|
print(f"[{i}] - Input text: {text}")
|
|
x = torch.tensor(
|
|
intersperse(text_to_sequence(text, ["kyrgyz_cleaners"]), 0),
|
|
dtype=torch.long,
|
|
device=device,
|
|
)[None]
|
|
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device)
|
|
x_phones = sequence_to_text(x.squeeze(0).tolist())
|
|
print(f"[{i}] - Phonetised text: {x_phones[1::2]}")
|
|
return {"x_orig": text, "x": x, "x_lengths": x_lengths, "x_phones": x_phones}
|
|
|
|
def to_waveform(mel, vocoder, denoiser=None):
|
|
audio = vocoder(mel).clamp(-1, 1)
|
|
if denoiser is not None:
|
|
audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze()
|
|
return audio.cpu().squeeze()
|
|
|
|
@torch.inference_mode()
|
|
def process_text_gradio(text):
|
|
output = process_text(1, text, device)
|
|
return output["x_phones"][1::2], output["x"], output["x_lengths"]
|
|
|
|
@torch.inference_mode()
|
|
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk=-1):
|
|
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
|
|
output = model.synthesise(
|
|
text,
|
|
text_length,
|
|
n_timesteps=n_timesteps,
|
|
temperature=temperature,
|
|
spks=spk,
|
|
length_scale=length_scale,
|
|
)
|
|
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
|
return output["waveform"].numpy()
|
|
|
|
def get_inference(text, n_timesteps=20, mel_temp = 0.667, length_scale=0.8, spk=-1):
|
|
phones, text, text_lengths = process_text_gradio(text)
|
|
print(type(synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)))
|
|
return synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
|
|
|
|
|
device = torch.device("cpu")
|
|
model_path = './checkpoints/checkpoint.ckpt'
|
|
vocoder_path = './checkpoints/generator'
|
|
model = load_matcha(model_path, device)
|
|
vocoder, denoiser = load_vocoder(vocoder_path, device)
|
|
|
|
def gen_tts(text, speaking_rate):
|
|
return 22050, get_inference(text = text, length_scale = speaking_rate)
|
|
|
|
default_text = "Баарыңарга салам, менин атым Акылай."
|
|
|
|
css = """
|
|
#share-btn-container {
|
|
display: flex;
|
|
padding-left: 0.5rem !important;
|
|
padding-right: 0.5rem !important;
|
|
background-color: #000000;
|
|
justify-content: center;
|
|
align-items: center;
|
|
border-radius: 9999px !important;
|
|
width: 13rem;
|
|
margin-top: 10px;
|
|
margin-left: auto;
|
|
flex: unset !important;
|
|
}
|
|
#share-btn {
|
|
all: initial;
|
|
color: #ffffff;
|
|
font-weight: 600;
|
|
cursor: pointer;
|
|
font-family: 'IBM Plex Sans', sans-serif;
|
|
margin-left: 0.5rem !important;
|
|
padding-top: 0.25rem !important;
|
|
padding-bottom: 0.25rem !important;
|
|
right:0;
|
|
}
|
|
#share-btn * {
|
|
all: unset !important;
|
|
}
|
|
#share-btn-container div:nth-child(-n+2){
|
|
width: auto !important;
|
|
min-height: 0px !important;
|
|
}
|
|
#share-btn-container .wrap {
|
|
display: none !important;
|
|
}
|
|
"""
|
|
with gr.Blocks(css=css) as block:
|
|
gr.HTML(
|
|
"""
|
|
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
|
|
<div
|
|
style="
|
|
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
|
|
"
|
|
>
|
|
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
|
|
Akyl-AI TTS
|
|
</h1>
|
|
</div>
|
|
</div>
|
|
"""
|
|
)
|
|
with gr.Row():
|
|
image_path = "./photo_2024-04-07_15-59-52.png"
|
|
gr.Image(image_path, label=None, width=660, height=315, show_label=False)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
|
|
speaking_rate = gr.Slider(label='Speaking rate', minimum=0.5, maximum=1, step=0.05, value=0.8, interactive=True, show_label=True, elem_id="speaking_rate")
|
|
|
|
|
|
run_button = gr.Button("Generate Audio", variant="primary")
|
|
with gr.Column():
|
|
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out")
|
|
|
|
inputs = [input_text, speaking_rate]
|
|
outputs = [audio_out]
|
|
run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True)
|
|
|
|
|
|
block.queue()
|
|
block.launch(share=True)
|
|
|