tfizben commited on
Commit
ea18a0a
verified
1 Parent(s): 591be65

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -63
app.py CHANGED
@@ -1,64 +1,46 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
3
+ import torch
4
+
5
+ # ---------- MODELO DE SIMPLIFICACI脫N ----------
6
+ simplifier_model_name = "google/flan-t5-small"
7
+ simplifier_tokenizer = AutoTokenizer.from_pretrained(simplifier_model_name)
8
+ simplifier_model = AutoModelForSeq2SeqLM.from_pretrained(simplifier_model_name)
9
+
10
+ def simplificar_texto(texto):
11
+ prompt = f"Simplify this text: {texto}"
12
+ inputs = simplifier_tokenizer(prompt, return_tensors="pt", truncation=True)
13
+ outputs = simplifier_model.generate(**inputs, max_new_tokens=100)
14
+ resultado = simplifier_tokenizer.decode(outputs[0], skip_special_tokens=True)
15
+ return resultado
16
+
17
+ # ---------- MODELO DE PREDICCI脫N DE TEXTO ----------
18
+ predictor_model_name = "distilgpt2"
19
+ predictor_tokenizer = AutoTokenizer.from_pretrained(predictor_model_name)
20
+ predictor_model = AutoModelForCausalLM.from_pretrained(predictor_model_name)
21
+
22
+ def predecir_texto(texto_inicial):
23
+ inputs = predictor_tokenizer.encode(texto_inicial, return_tensors="pt")
24
+ outputs = predictor_model.generate(inputs, max_new_tokens=20, do_sample=True, top_k=50)
25
+ texto_generado = predictor_tokenizer.decode(outputs[0], skip_special_tokens=True)
26
+ return texto_generado[len(texto_inicial):] # Solo mostrar lo nuevo
27
+
28
+ # ---------- INTERFAZ GRADIO ----------
29
+ with gr.Blocks() as demo:
30
+ gr.Markdown("## 馃 Chatbot Simplificador y Teclado Predictivo")
31
+
32
+ with gr.Tab("Simplificaci贸n de texto"):
33
+ gr.Markdown("Introduce un texto complejo y obt茅n una versi贸n m谩s sencilla.")
34
+ entrada_simplificar = gr.Textbox(label="Texto original", lines=4, placeholder="Ej. Un p谩rrafo de un documento legal...")
35
+ salida_simplificar = gr.Textbox(label="Texto simplificado")
36
+ boton_simplificar = gr.Button("Simplificar")
37
+ boton_simplificar.click(fn=simplificar_texto, inputs=entrada_simplificar, outputs=salida_simplificar)
38
+
39
+ with gr.Tab("Texto Predictivo"):
40
+ gr.Markdown("Escribe el inicio de una frase y recibe sugerencias.")
41
+ entrada_predecir = gr.Textbox(label="Frase incompleta", placeholder="Ej. Me gustar铆a ir a la...")
42
+ salida_predecir = gr.Textbox(label="Sugerencia")
43
+ boton_predecir = gr.Button("Predecir")
44
+ boton_predecir.click(fn=predecir_texto, inputs=entrada_predecir, outputs=salida_predecir)
45
+
46
+ demo.launch()