File size: 1,685 Bytes
cceecbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de9e199
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.memory import ConversationSummaryMemory
from langchain.schema import HumanMessage, SystemMessage
from langchain.chains import ConversationalRetrievalChain
from langchain.schema import AIMessage, HumanMessage
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
import openai
import gradio as gr
import os

#os.envrion["OPENAI_API_KEY"] = "sk-..."  # Replace with your key

# use the following line to load a directory of PDFs
loader = PyPDFDirectoryLoader("data/")
data = loader.load_and_split()

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, 
    chunk_overlap=0
)
all_splits = text_splitter.split_documents(data)

vectorstore = Chroma.from_documents(
    documents=all_splits,
    embedding=OpenAIEmbeddings()
)

llm = ChatOpenAI(temperature=1.0, model="gpt-4-1106-preview")
memory = ConversationSummaryMemory(
    llm=llm,
    memory_key="chat_history",
    return_messages=True
)

retriever = vectorstore.as_retriever()
# Initialize the Conversational Retrieval Chain
qa_chain = ConversationalRetrievalChain.from_llm(
    llm,
    retriever=retriever,
    memory=memory
)

def predict(message, history):
    # Get a response from the Conversational Retrieval Chain
    response = qa_chain.run(question=message)

    # Extract and return the content of the response
    return response  # or modify as needed based on the response structure



demo = gr.ChatInterface(predict)
demo.launch(share=True)